{"title":"Central limit theorems associated with the hierarchical Dirichlet process","authors":"Shui Feng, J.E. Paguyo","doi":"10.1016/j.spa.2025.104767","DOIUrl":null,"url":null,"abstract":"<div><div>The hierarchical Dirichlet process is a discrete random measure used as a prior in Bayesian nonparametrics and motivated by the study of groups of clustered data. We study the asymptotic behavior of the power sum symmetric polynomials for the vector of weights of the hierarchical Dirichlet process as the concentration parameters tend to infinity. We establish central limit theorems and obtain explicit representations for the asymptotic variances, with the latter clearly showing the impact of the hierarchical structure. These objects are related to the homozygosity in population genetics, the Simpson diversity index in ecology, and the Herfindahl–Hirschman index in economics.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104767"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492500211X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The hierarchical Dirichlet process is a discrete random measure used as a prior in Bayesian nonparametrics and motivated by the study of groups of clustered data. We study the asymptotic behavior of the power sum symmetric polynomials for the vector of weights of the hierarchical Dirichlet process as the concentration parameters tend to infinity. We establish central limit theorems and obtain explicit representations for the asymptotic variances, with the latter clearly showing the impact of the hierarchical structure. These objects are related to the homozygosity in population genetics, the Simpson diversity index in ecology, and the Herfindahl–Hirschman index in economics.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.