MG-SSAF: An advanced vision Transformer

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shuai Yang , Chunyan Hu , Lin Xie , Feifei Lee , Qiu Chen
{"title":"MG-SSAF: An advanced vision Transformer","authors":"Shuai Yang ,&nbsp;Chunyan Hu ,&nbsp;Lin Xie ,&nbsp;Feifei Lee ,&nbsp;Qiu Chen","doi":"10.1016/j.jvcir.2025.104578","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the excellent performance of local-window-based multi-head self-attention (MSA), non-overlapping windows hinder cross-window feature interaction, leading to high computational complexity. This paper presents MG-SSAF, a novel Vision Transformer backbone addressing these problems. First, we propose a <em>Space-wise Separable Multi-head Self-attention</em> (SS-MSA) mechanism to reduce the computational complexity further. Then, an extra <em>Attention Fusion Module</em> (AF Module) is introduced for the attention weights in SS-MSA to enhance the representation ability of the similarity. Next, we present a <em>Multi-scale Global Multi-head Self-attention</em> (MG-MSA) method to perform the global feature interaction. Moreover, we propose to perform the window-based MSA and the global MSA simultaneously in one attention module to realize local feature modeling and global feature interaction. The experimental results demonstrate that the MG-SSAF achieves superior performance with fewer parameters and lower computational complexity. The code is available at <span><span>https://github.com/shuaiyang11/MG-SSAF</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"112 ","pages":"Article 104578"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325001920","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the excellent performance of local-window-based multi-head self-attention (MSA), non-overlapping windows hinder cross-window feature interaction, leading to high computational complexity. This paper presents MG-SSAF, a novel Vision Transformer backbone addressing these problems. First, we propose a Space-wise Separable Multi-head Self-attention (SS-MSA) mechanism to reduce the computational complexity further. Then, an extra Attention Fusion Module (AF Module) is introduced for the attention weights in SS-MSA to enhance the representation ability of the similarity. Next, we present a Multi-scale Global Multi-head Self-attention (MG-MSA) method to perform the global feature interaction. Moreover, we propose to perform the window-based MSA and the global MSA simultaneously in one attention module to realize local feature modeling and global feature interaction. The experimental results demonstrate that the MG-SSAF achieves superior performance with fewer parameters and lower computational complexity. The code is available at https://github.com/shuaiyang11/MG-SSAF.
高级视觉变形器
尽管基于局部窗口的多头自注意算法(MSA)具有优异的性能,但不重叠的窗口阻碍了跨窗口特征的交互,导致计算复杂度高。本文提出了MG-SSAF,一种解决这些问题的新型视觉变压器骨干。首先,我们提出了一种空间可分多头自注意(SS-MSA)机制来进一步降低计算复杂度。然后,在SS-MSA的注意权值中引入额外的注意融合模块(Attention Fusion Module, AF Module),增强相似性表征能力。接下来,我们提出了一种多尺度全局多头自关注(MG-MSA)方法来进行全局特征交互。此外,我们提出在一个关注模块中同时进行基于窗口的特征建模和全局特征建模,以实现局部特征建模和全局特征交互。实验结果表明,MG-SSAF以较少的参数和较低的计算复杂度取得了优异的性能。代码可在https://github.com/shuaiyang11/MG-SSAF上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信