{"title":"In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.","authors":"Jianhao Wu,Jingwei Guo,Jiaxi Wu,Junzhu Song,Jiawei Xu,Yingqi Lin,Chunhui Huang,Chunxiang Shi,Jiawei Li,Caijuan Li,Yizhi Chen,Wei Wang,Jiale Gao,Qin Zhou,Yuanpei Zhang,Shihua Li,Xiao-Jiang Li,Chen-Yu Zhang,Xi Chen,Sen Yan","doi":"10.1093/brain/awaf330","DOIUrl":null,"url":null,"abstract":"Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge. Here, we present a synthetic biology-based approach that leverages endogenous small RNA processing machinery to self-assemble siRNA-encapsulating small extracellular vesicles (sEVs) and utilizes the host's natural circulatory system to transport siRNAs. Specifically, we engineered liver cells to express and package TDP-43-targeting siRNAs into rabies virus glycoprotein (RVG)-tagged sEVs, which are released into circulation and cross the blood-brain barrier to deliver siRNAs to the CNS. In a mouse model of TDP-43 pathology induced by stereotactic injection of mutant TDP-43 (M337V) virus, treatment with in vivo self-assembled TDP-43 siRNAs (IVSA-siR-TDP43) effectively reduced TDP-43 accumulation, leading to significant improvements in motor function and neuropathology. Additionally, an adeno-associated virus (AAV)-based delivery system was utilized to produce IVSA-siR-TDP43, demonstrating sustained therapeutic effects in TDP-43-associated neurodegeneration. These findings highlight a novel, effective, and minimally invasive gene therapy platform for addressing TDP-43 pathology in ALS and FTLD, offering a promising avenue for future clinical applications.","PeriodicalId":9063,"journal":{"name":"Brain","volume":"31 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awaf330","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge. Here, we present a synthetic biology-based approach that leverages endogenous small RNA processing machinery to self-assemble siRNA-encapsulating small extracellular vesicles (sEVs) and utilizes the host's natural circulatory system to transport siRNAs. Specifically, we engineered liver cells to express and package TDP-43-targeting siRNAs into rabies virus glycoprotein (RVG)-tagged sEVs, which are released into circulation and cross the blood-brain barrier to deliver siRNAs to the CNS. In a mouse model of TDP-43 pathology induced by stereotactic injection of mutant TDP-43 (M337V) virus, treatment with in vivo self-assembled TDP-43 siRNAs (IVSA-siR-TDP43) effectively reduced TDP-43 accumulation, leading to significant improvements in motor function and neuropathology. Additionally, an adeno-associated virus (AAV)-based delivery system was utilized to produce IVSA-siR-TDP43, demonstrating sustained therapeutic effects in TDP-43-associated neurodegeneration. These findings highlight a novel, effective, and minimally invasive gene therapy platform for addressing TDP-43 pathology in ALS and FTLD, offering a promising avenue for future clinical applications.
期刊介绍:
Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.