Rogier Dinkla , Tom Oomen , Sebastiaan Paul Mulders , Jan-Willem van Wingerden
{"title":"Closed-loop data-enabled predictive control and its equivalence with closed-loop subspace predictive control","authors":"Rogier Dinkla , Tom Oomen , Sebastiaan Paul Mulders , Jan-Willem van Wingerden","doi":"10.1016/j.automatica.2025.112556","DOIUrl":null,"url":null,"abstract":"<div><div>Factors like growing data availability and increasing system complexity have sparked interest in data-driven predictive control (DDPC) methods like Data-enabled Predictive Control (DeePC). However, closed-loop identification bias arises in the presence of noise, which reduces the effectiveness of obtained control policies. In this paper we propose Closed-loop Data-enabled Predictive Control (CL-DeePC), a framework that unifies different approaches to address this challenge. To this end, CL-DeePC incorporates instrumental variables (IVs) to synthesize and sequentially apply consistent single or multi-step-ahead predictors. Furthermore, a computationally efficient CL-DeePC implementation is developed that reveals an equivalence with Closed-loop Subspace Predictive Control (CL-SPC). Time marching simulations of DeePC and CL-DeePC are conducted using Hankel matrices of past data that are updated at every time step to induce potentially troublesome closed-loop correlations between inputs and noise. Compared to DeePC, CL-DeePC simulations demonstrate superior reference tracking, with a sensitivity study finding a 48% lower susceptibility to noise-induced reference tracking performance degradation.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"183 ","pages":"Article 112556"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825004510","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Factors like growing data availability and increasing system complexity have sparked interest in data-driven predictive control (DDPC) methods like Data-enabled Predictive Control (DeePC). However, closed-loop identification bias arises in the presence of noise, which reduces the effectiveness of obtained control policies. In this paper we propose Closed-loop Data-enabled Predictive Control (CL-DeePC), a framework that unifies different approaches to address this challenge. To this end, CL-DeePC incorporates instrumental variables (IVs) to synthesize and sequentially apply consistent single or multi-step-ahead predictors. Furthermore, a computationally efficient CL-DeePC implementation is developed that reveals an equivalence with Closed-loop Subspace Predictive Control (CL-SPC). Time marching simulations of DeePC and CL-DeePC are conducted using Hankel matrices of past data that are updated at every time step to induce potentially troublesome closed-loop correlations between inputs and noise. Compared to DeePC, CL-DeePC simulations demonstrate superior reference tracking, with a sensitivity study finding a 48% lower susceptibility to noise-induced reference tracking performance degradation.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.