Margin for compensating displacement of adrenal gland metastasis and fiducial marker along with respiratory phase in real-time motion-tracking radiation therapy.
IF 1.5 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Margin for compensating displacement of adrenal gland metastasis and fiducial marker along with respiratory phase in real-time motion-tracking radiation therapy.","authors":"Yuki Aoyama, Tetsuya Tomida, Susumu Nagata, Noriaki Muramatsu, Ryosei Nakada, Hideyuki Harada","doi":"10.1007/s12194-025-00960-9","DOIUrl":null,"url":null,"abstract":"<p><p>In therapy with Synchrony® mounted on Radixact®, the fiducial marker (FM) and adrenal gland metastasis, which shift with respiratory phase, require margin compensation for high-dose prescriptions. Although compensation is critical, no studies have examined the margin to compensate for the respiratory phase shift. Therefore, we aimed to suggest the compensating margin for the FM and adrenal metastasis shift along with respiratory phase. We used images from four-dimensional computed tomography (4DCT) taken twice and gated CT taken once before therapy initiation with available contour data for FM and adrenal gland metastasis in each image. The distance between the FM and the center of the gross tumor volume (GTV) in each image of a ten-set 4DCT was defined as the correlating association, and a relative cumulative frequency distribution was created based on it. The values of the margins compensating for respiratory displacement were obtained from the relative cumulative frequency distribution in the right-left/posterior-anterior/superior-inferior (S-I) directions. In cases wherein the FM was placed inside the GTV, the margin values decreased in the S-I direction.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00960-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
In therapy with Synchrony® mounted on Radixact®, the fiducial marker (FM) and adrenal gland metastasis, which shift with respiratory phase, require margin compensation for high-dose prescriptions. Although compensation is critical, no studies have examined the margin to compensate for the respiratory phase shift. Therefore, we aimed to suggest the compensating margin for the FM and adrenal metastasis shift along with respiratory phase. We used images from four-dimensional computed tomography (4DCT) taken twice and gated CT taken once before therapy initiation with available contour data for FM and adrenal gland metastasis in each image. The distance between the FM and the center of the gross tumor volume (GTV) in each image of a ten-set 4DCT was defined as the correlating association, and a relative cumulative frequency distribution was created based on it. The values of the margins compensating for respiratory displacement were obtained from the relative cumulative frequency distribution in the right-left/posterior-anterior/superior-inferior (S-I) directions. In cases wherein the FM was placed inside the GTV, the margin values decreased in the S-I direction.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.