{"title":"State-of-the-Art and Future Directions in Structural Proteomics.","authors":"Lotta J Happonen, Markku Varjosalo","doi":"10.1016/j.mcpro.2025.101065","DOIUrl":null,"url":null,"abstract":"<p><p>Structural proteomics has undergone a profound transformation, driven by the convergence of advanced experimental methodologies and computational innovations. Cutting-edge mass spectrometry (MS)-based approaches, including cross-linking MS (XL-MS), hydrogen-deuterium exchange MS (HDX-MS), and limited proteolysis MS (LiP-MS), now enable unprecedented insights into protein topology, conformational dynamics, and protein-protein interactions. These methods, complemented by affinity purification (AP), co-immunoprecipitation (co-IP), proximity labeling (PL), and spatial proteomics techniques, have expanded our ability to characterize the structural proteome at a systems-wide scale. Integration with electron cryo-microscopy (cryo-EM), cryo-electron tomography (cryo-ET), nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and small-angle X-ray/neutron scattering (SAXS/SANS) methods has further driven the field of integrative structural biology. These methods, in conjunction with AI-driven predictive models such as AlphaFold and RoseTTAFold, enable the high-resolution modeling of protein complexes and dynamic assemblies, bridging the gap between static structures and real-time conformational changes. This review explores the current state-of-the-art in structural proteomics, with a focus on methodological advances and the integration of XL-MS, HDX-MS, and LiP-MS with methods in structural biology. We further discuss application of structural proteomics in deciphering disease mechanisms, identifying therapeutic targets, and guiding drug discovery, with these techniques poised to revolutionize precision medicine. Future directions emphasize fully integrative, multimodal approaches that unify experimental and computational paradigms, fostering a holistic understanding of the human proteome.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"101065"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.101065","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Structural proteomics has undergone a profound transformation, driven by the convergence of advanced experimental methodologies and computational innovations. Cutting-edge mass spectrometry (MS)-based approaches, including cross-linking MS (XL-MS), hydrogen-deuterium exchange MS (HDX-MS), and limited proteolysis MS (LiP-MS), now enable unprecedented insights into protein topology, conformational dynamics, and protein-protein interactions. These methods, complemented by affinity purification (AP), co-immunoprecipitation (co-IP), proximity labeling (PL), and spatial proteomics techniques, have expanded our ability to characterize the structural proteome at a systems-wide scale. Integration with electron cryo-microscopy (cryo-EM), cryo-electron tomography (cryo-ET), nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and small-angle X-ray/neutron scattering (SAXS/SANS) methods has further driven the field of integrative structural biology. These methods, in conjunction with AI-driven predictive models such as AlphaFold and RoseTTAFold, enable the high-resolution modeling of protein complexes and dynamic assemblies, bridging the gap between static structures and real-time conformational changes. This review explores the current state-of-the-art in structural proteomics, with a focus on methodological advances and the integration of XL-MS, HDX-MS, and LiP-MS with methods in structural biology. We further discuss application of structural proteomics in deciphering disease mechanisms, identifying therapeutic targets, and guiding drug discovery, with these techniques poised to revolutionize precision medicine. Future directions emphasize fully integrative, multimodal approaches that unify experimental and computational paradigms, fostering a holistic understanding of the human proteome.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes