Defei Li, Ming-Chun Zhao, Tong Yuan, Ke Cui, Fuqin Zhang
{"title":"Insight into Bi-Sb alloys and their chalcogenide compounds for sodium/potassium ion battery (SIB/PIB) anodes","authors":"Defei Li, Ming-Chun Zhao, Tong Yuan, Ke Cui, Fuqin Zhang","doi":"10.1016/j.progsolidstchem.2025.100545","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium/potassium ion batteries (SIBs/PIBs), emerging as promising alternatives to lithium-ion batteries (LIBs), show great potential in large-scale electrical energy storage systems owing to their abundant reserves, potential cost advantages, and low standard redox potentials. In recent years, Bi-Sb alloys and their chalcogenide compounds (sulfides, selenides, and tellurides) have garnered significant attention due to their unique bimetallic synergistic effects and tunable energy storage mechanisms. This paper reviews the recent progress in Bi-Sb alloys and their chalcogenide compounds as anode materials for SIBs and PIBs. Highlighting the synergistic effects of Bi-Sb systems, the study emphasizes their high theoretical capacity, reduced volume expansion, and enhanced structural stability compared to monometallic counterparts. Key strategies such as nano-structuring (e.g., nanoporous and 2D layered architectures), composite engineering (e.g., carbon-based matrices), and heterostructure design are discussed to address challenges like electrode pulverization. The electrochemical mechanisms, including multi-step alloying and conversion reactions, are analyzed to elucidate performance enhancements in terms of cycling stability, rate capability, and capacity retention. Specifically, the paper examines the structural properties, modification strategies, and performance optimization mechanisms of these materials, and identifies key pathways for their engineering applications, aiming to provide theoretical support and technological references for designing high-capacity anode materials for SIBs/PIBs. Additionally, critical issues, challenges, and prospects for further development are suggested. This work provides critical insights into material design principles and offers pathways for developing next-generation, cost-effective energy storage technologies.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"80 ","pages":"Article 100545"},"PeriodicalIF":10.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007967862500038X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium/potassium ion batteries (SIBs/PIBs), emerging as promising alternatives to lithium-ion batteries (LIBs), show great potential in large-scale electrical energy storage systems owing to their abundant reserves, potential cost advantages, and low standard redox potentials. In recent years, Bi-Sb alloys and their chalcogenide compounds (sulfides, selenides, and tellurides) have garnered significant attention due to their unique bimetallic synergistic effects and tunable energy storage mechanisms. This paper reviews the recent progress in Bi-Sb alloys and their chalcogenide compounds as anode materials for SIBs and PIBs. Highlighting the synergistic effects of Bi-Sb systems, the study emphasizes their high theoretical capacity, reduced volume expansion, and enhanced structural stability compared to monometallic counterparts. Key strategies such as nano-structuring (e.g., nanoporous and 2D layered architectures), composite engineering (e.g., carbon-based matrices), and heterostructure design are discussed to address challenges like electrode pulverization. The electrochemical mechanisms, including multi-step alloying and conversion reactions, are analyzed to elucidate performance enhancements in terms of cycling stability, rate capability, and capacity retention. Specifically, the paper examines the structural properties, modification strategies, and performance optimization mechanisms of these materials, and identifies key pathways for their engineering applications, aiming to provide theoretical support and technological references for designing high-capacity anode materials for SIBs/PIBs. Additionally, critical issues, challenges, and prospects for further development are suggested. This work provides critical insights into material design principles and offers pathways for developing next-generation, cost-effective energy storage technologies.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.