Interfacially enhanced visible-light photocatalysis for tetracycline degradation with Bi2Se3/g-C3N4 nanocomposite

IF 3.1 3区 化学 Q3 CHEMISTRY, PHYSICAL
Mingli Chen , Han Xu , Zhan Wang
{"title":"Interfacially enhanced visible-light photocatalysis for tetracycline degradation with Bi2Se3/g-C3N4 nanocomposite","authors":"Mingli Chen ,&nbsp;Han Xu ,&nbsp;Zhan Wang","doi":"10.1016/j.cplett.2025.142399","DOIUrl":null,"url":null,"abstract":"<div><div>Tetracycline (TC) contamination in water bodies poses a serious environmental and health risk, underscoring the need for effective remediation strategies. Herein, this work explores a novel approach to TC remediation using a 2D/2D Bi<sub>2</sub>Se<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> nanosheet nanocomposite as a visible-light-driven photocatalyst. The key innovation lies in the 2D/2D Bi<sub>2</sub>Se<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterostructure, designed to enhance charge separation and reactive oxygen species generation. Optimized nanocomposites (5 % Bi<sub>2</sub>Se<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub>) achieve 86.11 % TC degradation within 90 min, demonstrating substantially superior performance compared to g-C<sub>3</sub>N<sub>4</sub> and Bi<sub>2</sub>Se<sub>3</sub> components. Photoelectrochemical and photoluminescence analyses reveal that the enhanced activity stems from efficient interfacial charge transfer, minimizing electron-hole recombination. This study showcases that Bi<sub>2</sub>Se<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> nanocomposites offer a promising strategy for the photocatalytic removal of antibiotic pollutants from water.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"879 ","pages":"Article 142399"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000926142500541X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tetracycline (TC) contamination in water bodies poses a serious environmental and health risk, underscoring the need for effective remediation strategies. Herein, this work explores a novel approach to TC remediation using a 2D/2D Bi2Se3/g-C3N4 nanosheet nanocomposite as a visible-light-driven photocatalyst. The key innovation lies in the 2D/2D Bi2Se3/g-C3N4 heterostructure, designed to enhance charge separation and reactive oxygen species generation. Optimized nanocomposites (5 % Bi2Se3/g-C3N4) achieve 86.11 % TC degradation within 90 min, demonstrating substantially superior performance compared to g-C3N4 and Bi2Se3 components. Photoelectrochemical and photoluminescence analyses reveal that the enhanced activity stems from efficient interfacial charge transfer, minimizing electron-hole recombination. This study showcases that Bi2Se3/g-C3N4 nanocomposites offer a promising strategy for the photocatalytic removal of antibiotic pollutants from water.

Abstract Image

Bi2Se3/g-C3N4纳米复合材料界面增强可见光催化降解四环素的研究
水体中的四环素污染构成严重的环境和健康风险,强调需要有效的补救战略。本研究探索了一种利用2D/2D Bi2Se3/g-C3N4纳米片纳米复合材料作为可见光驱动光催化剂来修复TC的新方法。关键创新在于2D/2D Bi2Se3/g-C3N4异质结构,旨在增强电荷分离和活性氧的生成。优化后的纳米复合材料(5 % Bi2Se3/g-C3N4)在90 min内实现了86.11% %的TC降解,与g-C3N4和Bi2Se3组分相比,表现出显著的优异性能。光电化学和光致发光分析表明,活性增强源于有效的界面电荷转移,最大限度地减少了电子-空穴复合。该研究表明,Bi2Se3/g-C3N4纳米复合材料为光催化去除水中抗生素污染物提供了一种很有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Letters
Chemical Physics Letters 化学-物理:原子、分子和化学物理
CiteScore
5.70
自引率
3.60%
发文量
798
审稿时长
33 days
期刊介绍: Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信