Walton P. Coutinho , Jörg Fliege , Maria Battarra , Anand Subramanian
{"title":"Routing a fleet of unmanned aerial vehicles: A trajectory optimisation-based framework","authors":"Walton P. Coutinho , Jörg Fliege , Maria Battarra , Anand Subramanian","doi":"10.1016/j.trb.2025.103312","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an aerial survey operation in which a fleet of unmanned aerial vehicles (UAVs) is required to visit several locations and then land in one of the available landing sites while optimising some performance criteria, subject to operational constraints and flight dynamics. We aim to minimise the maximum flight time of the UAVs. To efficiently solve this problem, we propose an algorithmic framework consisting of: (i) a nonlinear programming formulation of trajectory optimisation that accurately reflects the underlying flight dynamics and operational constraints; (ii) two sequential trajectory optimisation heuristics, designed to cope with the challenging task of finding feasible flight trajectories for a given route; and (iii) a routing metaheuristic combining iterated local search and a set-partitioning-based integer programming formulation. The proposed framework is tested on randomly generated instances with up to 50 waypoints, showing its efficacy.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"200 ","pages":"Article 103312"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261525001614","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an aerial survey operation in which a fleet of unmanned aerial vehicles (UAVs) is required to visit several locations and then land in one of the available landing sites while optimising some performance criteria, subject to operational constraints and flight dynamics. We aim to minimise the maximum flight time of the UAVs. To efficiently solve this problem, we propose an algorithmic framework consisting of: (i) a nonlinear programming formulation of trajectory optimisation that accurately reflects the underlying flight dynamics and operational constraints; (ii) two sequential trajectory optimisation heuristics, designed to cope with the challenging task of finding feasible flight trajectories for a given route; and (iii) a routing metaheuristic combining iterated local search and a set-partitioning-based integer programming formulation. The proposed framework is tested on randomly generated instances with up to 50 waypoints, showing its efficacy.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.