EffiSeisM: An efficient multi-task deep learning model for earthquake monitoring

IF 4.4 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lixin Zhang , Ziang Li , Zhijun Dai , Hongmin Liu
{"title":"EffiSeisM: An efficient multi-task deep learning model for earthquake monitoring","authors":"Lixin Zhang ,&nbsp;Ziang Li ,&nbsp;Zhijun Dai ,&nbsp;Hongmin Liu","doi":"10.1016/j.cageo.2025.106039","DOIUrl":null,"url":null,"abstract":"<div><div>Earthquake monitoring is essential for providing timely warnings, mitigating disaster impacts, advancing scientific research, and guiding urban planning. Precise seismic waveform analysis enables accurate event detection, magnitude estimation, and a deeper understanding of earthquake mechanisms. In this paper, we propose EffiSeisM, an efficient multi-task deep learning model that combines a state space model with a convolutional architecture for earthquake detection, phase picking, and magnitude estimation. EffiSeisM designed a novel Seismic Scale Conv Module and a Conv-SSM encoder, which effectively capture key seismic features while reducing computational complexity. This design ensures high accuracy and operational efficiency, enabling effective seismic analysis. We evaluate EffiSeisM on the DiTing Dataset and DiTing Dataset 2.0, comprising 3 million seismic samples from China and surrounding regions, and compare its performance with several baseline models. The results show that EffiSeisM consistently outperforms the baselines, achieving F1 scores of 0.98 for earthquake detection, 0.92 for phase-P picking, 0.84 for phase-S picking, and an R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.92 for magnitude estimation. Additionally, EffiSeisM demonstrates significant improvements in inference speed and accuracy, highlighting its potential as a scalable and efficient solution for large-scale seismic data analysis.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"206 ","pages":"Article 106039"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009830042500189X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Earthquake monitoring is essential for providing timely warnings, mitigating disaster impacts, advancing scientific research, and guiding urban planning. Precise seismic waveform analysis enables accurate event detection, magnitude estimation, and a deeper understanding of earthquake mechanisms. In this paper, we propose EffiSeisM, an efficient multi-task deep learning model that combines a state space model with a convolutional architecture for earthquake detection, phase picking, and magnitude estimation. EffiSeisM designed a novel Seismic Scale Conv Module and a Conv-SSM encoder, which effectively capture key seismic features while reducing computational complexity. This design ensures high accuracy and operational efficiency, enabling effective seismic analysis. We evaluate EffiSeisM on the DiTing Dataset and DiTing Dataset 2.0, comprising 3 million seismic samples from China and surrounding regions, and compare its performance with several baseline models. The results show that EffiSeisM consistently outperforms the baselines, achieving F1 scores of 0.98 for earthquake detection, 0.92 for phase-P picking, 0.84 for phase-S picking, and an R2 of 0.92 for magnitude estimation. Additionally, EffiSeisM demonstrates significant improvements in inference speed and accuracy, highlighting its potential as a scalable and efficient solution for large-scale seismic data analysis.
effisism:用于地震监测的高效多任务深度学习模型
地震监测对于提供及时预警、减轻灾害影响、推进科学研究和指导城市规划至关重要。精确的地震波形分析使准确的事件检测、震级估计和对地震机制的更深入了解成为可能。在本文中,我们提出effisism,这是一种高效的多任务深度学习模型,它将状态空间模型与用于地震检测、相位选择和震级估计的卷积架构相结合。effisisism设计了一种新颖的地震尺度转换模块和一种convs - ssm编码器,可以有效地捕获关键地震特征,同时降低计算复杂度。这种设计确保了高精度和操作效率,实现了有效的地震分析。我们在DiTing数据集和DiTing数据集2.0上对effisism进行了评估,DiTing数据集包含来自中国及周边地区的300万地震样本,并将其性能与几个基线模型进行了比较。结果表明,effisisism始终优于基线,地震检测的F1得分为0.98,相位p拾取的F1得分为0.92,相位s拾取的F1得分为0.84,震级估计的R2为0.92。此外,effisisism在推理速度和准确性方面有了显着提高,突出了其作为大规模地震数据分析的可扩展和高效解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信