Moving horizon capacitated arc routing problem

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Somnath Buriuly, Leena Vachhani, Arpita Sinha, Sivapragasam Ravitharan, Sunita Chauhan
{"title":"Moving horizon capacitated arc routing problem","authors":"Somnath Buriuly, Leena Vachhani, Arpita Sinha, Sivapragasam Ravitharan, Sunita Chauhan","doi":"10.1007/s10878-025-01344-w","DOIUrl":null,"url":null,"abstract":"<p>In transportation networks, routing problems are cursed with arbitrary changes occurring in the dataset due to unpredictable events like agent breakdown (sensor or vehicle failure), network connectivity changes, resource/demand fluctuations, etc. Moreover, capacity restriction on the agents may require multi-trip solutions for meeting large demands over networks. For example, a battery-powered inspection wagon can only service a limited number of track sections in a single trip. We investigate a moving horizon approach for the multi-trip dynamic capacitated arc routing problem with limited duration to mitigate the limitations of CARP variants in the literature. The proposed approach addresses arbitrary changes in the underlying network, agent unavailability scenarios, and simultaneously satisfies the time limit on meeting all demands. The moving horizon approach subdivides the planning horizon to determine the current trip (single-trip) for all agents, hence coined as Moving Horizon Capacitated Arc Routing Problem (MH-CARP). The proposed MH-CARP is formulated as a set covering problem that considers both partial and full trips (trips may not start at the depot), making it suitable for tackling arbitrary events by re-planning. Theoretical results for the computation of dual variables are derived and then implemented in the column generation algorithm to obtain lower bounds. The algorithm is validated on a widely available dataset for CARP, having instances of up to 147 tasks that require servicing by up to 20 agents. Using this benchmark data, the partial-trip based re-planning strategy is also validated. Lastly, a simulation study is presented to demonstrate the re-planning strategy and compare an MH-CARP solution to two CARP based solutions - one with no arbitrary events and the other with known arbitrary events. The results also convey that greedy solutions are avoided to satisfy the limited duration restriction, and automatic re-ordering of the trips is achieved to compensate for arbitrary events.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"84 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01344-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In transportation networks, routing problems are cursed with arbitrary changes occurring in the dataset due to unpredictable events like agent breakdown (sensor or vehicle failure), network connectivity changes, resource/demand fluctuations, etc. Moreover, capacity restriction on the agents may require multi-trip solutions for meeting large demands over networks. For example, a battery-powered inspection wagon can only service a limited number of track sections in a single trip. We investigate a moving horizon approach for the multi-trip dynamic capacitated arc routing problem with limited duration to mitigate the limitations of CARP variants in the literature. The proposed approach addresses arbitrary changes in the underlying network, agent unavailability scenarios, and simultaneously satisfies the time limit on meeting all demands. The moving horizon approach subdivides the planning horizon to determine the current trip (single-trip) for all agents, hence coined as Moving Horizon Capacitated Arc Routing Problem (MH-CARP). The proposed MH-CARP is formulated as a set covering problem that considers both partial and full trips (trips may not start at the depot), making it suitable for tackling arbitrary events by re-planning. Theoretical results for the computation of dual variables are derived and then implemented in the column generation algorithm to obtain lower bounds. The algorithm is validated on a widely available dataset for CARP, having instances of up to 147 tasks that require servicing by up to 20 agents. Using this benchmark data, the partial-trip based re-planning strategy is also validated. Lastly, a simulation study is presented to demonstrate the re-planning strategy and compare an MH-CARP solution to two CARP based solutions - one with no arbitrary events and the other with known arbitrary events. The results also convey that greedy solutions are avoided to satisfy the limited duration restriction, and automatic re-ordering of the trips is achieved to compensate for arbitrary events.

移动视界容弧布线问题
在交通网络中,由于不可预测的事件(如代理故障(传感器或车辆故障)、网络连接变化、资源/需求波动等),数据集中发生任意变化,路由问题受到了困扰。此外,代理的容量限制可能需要多行程解决方案来满足网络上的大需求。例如,一辆电池供电的检查车在一次旅行中只能服务有限的轨道部分。我们研究了一种移动视界方法来解决持续时间有限的多行程动态电容电弧布线问题,以减轻文献中CARP变量的局限性。该方法解决了底层网络的任意变化、代理不可用等情况,同时满足了满足所有需求的时间限制。移动视界方法将规划视界细分,以确定所有智能体的当前行程(单行程),因此称为移动视界容能弧路由问题(MH-CARP)。所建议的MH-CARP被表述为一个集覆盖问题,它考虑了部分和全部行程(行程可能不在仓库开始),使其适合通过重新规划来处理任意事件。推导了对偶变量计算的理论结果,并在列生成算法中实现了下界的求解。该算法在一个广泛可用的CARP数据集上得到验证,该数据集有多达147个任务的实例,这些任务需要多达20个代理提供服务。使用这些基准数据,还验证了基于部分行程的重新规划策略。最后,通过仿真研究展示了重新规划策略,并将MH-CARP解决方案与两种基于CARP的解决方案进行了比较——一种没有任意事件,另一种有已知的任意事件。结果还表明,避免了贪心解,以满足有限时间限制,并实现了行程的自动重新排序,以补偿任意事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信