{"title":"A Branch–Reduction–Bound algorithm for linear fractional multi-product planning problems","authors":"Xianfeng Ding, Meiling Hu","doi":"10.1007/s10878-025-01333-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a Branch–Reduction–Bound (BRB) algorithm to solve fractional multiplicative product programming problems, with the aim of finding globally optimal solutions. The method introduces two innovative linear transformation techniques that simplify the solution process by converting the original problem into two equivalent linear relaxation problems. Building on this, a novel branch-and-delete rule is developed to efficiently manage sub-problem selection using a dynamic priority queue approach, and the computational process is further optimized through a region deletion rule. The synergy of these techniques significantly accelerates the algorithm's convergence rate, providing an efficient global optimization strategy. We compare the BRB algorithm with four other algorithms through numerical experiments, and the results confirm its feasibility, effectiveness, and superior computational efficiency, highlighting its advantages in solving complex optimization problems.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"33 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01333-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a Branch–Reduction–Bound (BRB) algorithm to solve fractional multiplicative product programming problems, with the aim of finding globally optimal solutions. The method introduces two innovative linear transformation techniques that simplify the solution process by converting the original problem into two equivalent linear relaxation problems. Building on this, a novel branch-and-delete rule is developed to efficiently manage sub-problem selection using a dynamic priority queue approach, and the computational process is further optimized through a region deletion rule. The synergy of these techniques significantly accelerates the algorithm's convergence rate, providing an efficient global optimization strategy. We compare the BRB algorithm with four other algorithms through numerical experiments, and the results confirm its feasibility, effectiveness, and superior computational efficiency, highlighting its advantages in solving complex optimization problems.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.