{"title":"Fractional Chromatic Number Vs. Hall Ratio","authors":"Raphael Steiner","doi":"10.1007/s00493-025-00164-0","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <i>G</i>, its <i>Hall ratio</i> <span><span style=\"\">\\rho (G)=\\max _{H\\subseteq G}\\frac{|V(H)|}{\\alpha (H)}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"4.216ex\" role=\"img\" style=\"vertical-align: -1.507ex;\" viewbox=\"0 -1166.4 9758.2 1815.3\" width=\"22.664ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C1\" y=\"0\"></use><use x=\"517\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"907\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"1693\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"2360\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(3417,0)\"><use xlink:href=\"#MJMAIN-6D\"></use><use x=\"833\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use x=\"1334\" xlink:href=\"#MJMAIN-78\" y=\"0\"></use><g transform=\"translate(1862,-155)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2286\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1667\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use></g></g><g transform=\"translate(7114,0)\"><g transform=\"translate(286,0)\"><rect height=\"60\" stroke=\"none\" width=\"2237\" x=\"0\" y=\"220\"></rect><g transform=\"translate(60,568)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-7C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMATHI-56\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1048\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1437\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2326\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2715\" xlink:href=\"#MJMAIN-7C\" y=\"0\"></use></g><g transform=\"translate(302,-422)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-3B1\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"640\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1030\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1918\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g></g></g></svg></span><script type=\"math/tex\">\\rho (G)=\\max _{H\\subseteq G}\\frac{|V(H)|}{\\alpha (H)}</script></span> forms a natural lower bound for its fractional chromatic number <span><span style=\"\">\\chi _f(G)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.806ex;\" viewbox=\"0 -821.4 2681.3 1168.4\" width=\"6.227ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C7\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"886\" xlink:href=\"#MJMATHI-66\" y=\"-219\"></use><use x=\"1115\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1505\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"2291\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\chi _f(G)</script></span>. A recent line of research studied the question whether <span><span style=\"\">\\chi _f(G)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.806ex;\" viewbox=\"0 -821.4 2681.3 1168.4\" width=\"6.227ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C7\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"886\" xlink:href=\"#MJMATHI-66\" y=\"-219\"></use><use x=\"1115\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1505\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"2291\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\chi _f(G)</script></span> can be bounded in terms of a (linear) function of <span><span style=\"\">\\rho (G)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 2083 1123.4\" width=\"4.838ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C1\" y=\"0\"></use><use x=\"517\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"907\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"1693\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\rho (G)</script></span>. Dvořák, Ossona de Mendez and Wu [6, <i>Combinatorica</i>, 2020] gave a negative answer by proving the existence of graphs with bounded Hall ratio and arbitrarily large fractional chromatic number. In this paper, we solve two follow-up problems that were raised by Dvořák et al. The first problem concerns determining the growth of <i>g</i>(<i>n</i>), defined as the maximum ratio <span><span style=\"\">\\frac{\\chi _f(G)}{\\rho (G)}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"4.417ex\" role=\"img\" style=\"vertical-align: -1.507ex;\" viewbox=\"0 -1252.7 2255.9 1901.6\" width=\"5.24ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"2015\" x=\"0\" y=\"220\"></rect><g transform=\"translate(60,663)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-3C7\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"886\" xlink:href=\"#MJMATHI-66\" y=\"-340\"></use><use transform=\"scale(0.707)\" x=\"1115\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1505\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2291\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g><g transform=\"translate(271,-422)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-3C1\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"517\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"907\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1693\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/tex\">\\frac{\\chi _f(G)}{\\rho (G)}</script></span> among all <i>n</i>-vertex graphs. Dvořák et al. obtained the bounds <span><span style=\"\">\\Omega (\\log \\log n) \\le g(n)\\le O(\\log n)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 13111.6 1123.4\" width=\"30.453ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-3A9\" y=\"0\"></use><use x=\"722\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1112,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><g transform=\"translate(2558,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><use x=\"4004\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"4604\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"5272\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"6328\" xlink:href=\"#MJMATHI-67\" y=\"0\"></use><use x=\"6808\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"7198\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"7798\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"8466\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"9522\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use><use x=\"10285\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(10675,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><use x=\"12121\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"12722\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\Omega (\\log \\log n) \\le g(n)\\le O(\\log n)</script></span>. We show that the true value is close to the upper bound: <span><span style=\"\">g(n)=(\\log n)^{1-o(1)}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.909ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -949.2 8272.2 1252.6\" width=\"19.213ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-67\" y=\"0\"></use><use x=\"480\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"870\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"1470\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"2137\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"3194\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(3583,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><use x=\"5029\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(5630,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><g transform=\"translate(389,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1279\" xlink:href=\"#MJMATHI-6F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1764\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2154\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2654\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/tex\">g(n)=(\\log n)^{1-o(1)}</script></span>. The second problem posed by Dvořák et al. asks for the existence of graphs with bounded Hall ratio, arbitrarily large fractional chromatic number and such that every subgraph contains an independent set that touches a constant fraction of its edges. We show that such graphs indeed exist.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00164-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a graph G, its Hall ratio\rho (G)=\max _{H\subseteq G}\frac{|V(H)|}{\alpha (H)} forms a natural lower bound for its fractional chromatic number \chi _f(G). A recent line of research studied the question whether \chi _f(G) can be bounded in terms of a (linear) function of \rho (G). Dvořák, Ossona de Mendez and Wu [6, Combinatorica, 2020] gave a negative answer by proving the existence of graphs with bounded Hall ratio and arbitrarily large fractional chromatic number. In this paper, we solve two follow-up problems that were raised by Dvořák et al. The first problem concerns determining the growth of g(n), defined as the maximum ratio \frac{\chi _f(G)}{\rho (G)} among all n-vertex graphs. Dvořák et al. obtained the bounds \Omega (\log \log n) \le g(n)\le O(\log n). We show that the true value is close to the upper bound: g(n)=(\log n)^{1-o(1)}. The second problem posed by Dvořák et al. asks for the existence of graphs with bounded Hall ratio, arbitrarily large fractional chromatic number and such that every subgraph contains an independent set that touches a constant fraction of its edges. We show that such graphs indeed exist.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.