Signed graphs with the same even cycles

IF 1 2区 数学 Q1 MATHEMATICS
Bertrand Guenin, Cheolwon Heo, Irene Pivotto
{"title":"Signed graphs with the same even cycles","authors":"Bertrand Guenin, Cheolwon Heo, Irene Pivotto","doi":"10.1007/s00493-025-00160-4","DOIUrl":null,"url":null,"abstract":"<p>Whitney proved that if two 3-connected graphs <i>G</i> and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -821.4 1081.3 909.7\" width=\"2.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMAIN-2032\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>G</mi><mo>′</mo></msup></math></span></span><script type=\"math/tex\">G'</script></span> have the same set of cycles (or equivalently, the same set of cuts) then <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;&amp;#x2032;&lt;/mo&gt;&lt;/msup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -821.4 3201.9 909.7\" width=\"7.437ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"1064\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(2120,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMAIN-2032\" y=\"513\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi><mo>=</mo><msup><mi>G</mi><mo>′</mo></msup></math></span></span><script type=\"math/tex\">G=G'</script></span>. We characterize when two 4-connected signed graphs have the same set of even cycles, and we characterize when two 4-connected grafts have the same set of even cuts.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"24 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00160-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Whitney proved that if two 3-connected graphs G and G have the same set of cycles (or equivalently, the same set of cuts) then G=G. We characterize when two 4-connected signed graphs have the same set of even cycles, and we characterize when two 4-connected grafts have the same set of even cuts.

具有相同偶数环的符号图
Whitney证明了如果两个3连通图G和G‘ G’具有相同的环集(或等价地,相同的切集),则G=G‘ G=G’。我们刻画了两个4连通符号图有相同的偶环集,以及两个4连通接枝有相同的偶切集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信