Isomorphisms Between Dense Random Graphs

IF 1 2区 数学 Q1 MATHEMATICS
Erlang Surya, Lutz Warnke, Emily Zhu
{"title":"Isomorphisms Between Dense Random Graphs","authors":"Erlang Surya, Lutz Warnke, Emily Zhu","doi":"10.1007/s00493-025-00157-z","DOIUrl":null,"url":null,"abstract":"<p>We consider two variants of the induced subgraph isomorphism problem for two independent binomial random graphs with constant edge-probabilities <span><span style=\"\">p_1,p_2</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.812ex\" role=\"img\" style=\"vertical-align: -0.606ex; margin-left: -0.089ex;\" viewbox=\"-38.5 -519.5 2398.5 780.3\" width=\"5.571ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"712\" xlink:href=\"#MJMAIN-31\" y=\"-213\"></use><use x=\"957\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(1402,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"712\" xlink:href=\"#MJMAIN-32\" y=\"-213\"></use></g></g></svg></span><script type=\"math/tex\">p_1,p_2</script></span>. In particular, (i) we prove a sharp threshold result for the appearance of <span><span style=\"\">G_{n,p_1}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.709ex\" role=\"img\" style=\"vertical-align: -0.905ex;\" viewbox=\"0 -777 2185 1166.5\" width=\"5.075ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(621,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-31\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{n,p_1}</script></span> as an induced subgraph of <span><span style=\"\">G_{N,p_2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.709ex\" role=\"img\" style=\"vertical-align: -0.905ex;\" viewbox=\"0 -777 2388.7 1166.5\" width=\"5.548ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(825,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-32\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{N,p_2}</script></span>, (ii) we show two-point concentration of the size of the maximum common induced subgraph of <span><span style=\"\">G_{N, p_1}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.906ex;\" viewbox=\"0 -778.3 2388.7 1168.4\" width=\"5.548ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(825,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-31\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{N, p_1}</script></span> and <span><span style=\"\">G_{N,p_2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.906ex;\" viewbox=\"0 -778.3 2388.7 1168.4\" width=\"5.548ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(825,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-32\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{N,p_2}</script></span>, and (iii) we show that the number of induced copies of <span><span style=\"\">G_{n,p_1}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.906ex;\" viewbox=\"0 -778.3 2185 1168.4\" width=\"5.075ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(621,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-31\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{n,p_1}</script></span> in <span><span style=\"\">G_{N,p_2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.906ex;\" viewbox=\"0 -778.3 2388.7 1168.4\" width=\"5.548ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(825,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-32\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{N,p_2}</script></span> has an unusual limiting distribution. These results confirm simulation-based predictions of McCreesh, Prosser, Solnon and Trimble, and resolve several open problems of Chatterjee and Diaconis. The proofs are based on careful refinements of the first and second moment method, using extra twists to (a) take some non-standard behaviors into account, and (b) work around the large variance issues that prevent standard applications of these methods.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"33 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00157-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider two variants of the induced subgraph isomorphism problem for two independent binomial random graphs with constant edge-probabilities p_1,p_2. In particular, (i) we prove a sharp threshold result for the appearance of G_{n,p_1} as an induced subgraph of G_{N,p_2}, (ii) we show two-point concentration of the size of the maximum common induced subgraph of G_{N, p_1} and G_{N,p_2}, and (iii) we show that the number of induced copies of G_{n,p_1} in G_{N,p_2} has an unusual limiting distribution. These results confirm simulation-based predictions of McCreesh, Prosser, Solnon and Trimble, and resolve several open problems of Chatterjee and Diaconis. The proofs are based on careful refinements of the first and second moment method, using extra twists to (a) take some non-standard behaviors into account, and (b) work around the large variance issues that prevent standard applications of these methods.

稠密随机图之间的同构
考虑具有常边概率的两个独立二项随机图p_1,p_2p_1,p_2的诱导子图同构问题的两个变体。特别地,我们(i)证明了G_{n,p_1}G_{n, p_2}G_{n, p_2}的诱导子图G_{n,p_1}和G_{n, p_2}G_{n, p_2}的最大公共诱导子图大小的两点集中,(iii)证明了G_{n,p_1}G_{n,p_1}的诱导拷贝数在G_{n, p_2}G_{n, p_2}中具有不寻常的极限分布。这些结果证实了McCreesh、Prosser、Solnon和Trimble基于模拟的预测,并解决了Chatterjee和Diaconis的几个悬而未决的问题。这些证明是基于对第一和第二矩方法的仔细改进,使用额外的扭曲来(a)考虑一些非标准行为,以及(b)围绕阻止这些方法的标准应用的大方差问题进行工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信