{"title":"Isomorphisms Between Dense Random Graphs","authors":"Erlang Surya, Lutz Warnke, Emily Zhu","doi":"10.1007/s00493-025-00157-z","DOIUrl":null,"url":null,"abstract":"<p>We consider two variants of the induced subgraph isomorphism problem for two independent binomial random graphs with constant edge-probabilities <span><span style=\"\">p_1,p_2</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.812ex\" role=\"img\" style=\"vertical-align: -0.606ex; margin-left: -0.089ex;\" viewbox=\"-38.5 -519.5 2398.5 780.3\" width=\"5.571ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"712\" xlink:href=\"#MJMAIN-31\" y=\"-213\"></use><use x=\"957\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(1402,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"712\" xlink:href=\"#MJMAIN-32\" y=\"-213\"></use></g></g></svg></span><script type=\"math/tex\">p_1,p_2</script></span>. In particular, (i) we prove a sharp threshold result for the appearance of <span><span style=\"\">G_{n,p_1}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.709ex\" role=\"img\" style=\"vertical-align: -0.905ex;\" viewbox=\"0 -777 2185 1166.5\" width=\"5.075ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(621,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-31\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{n,p_1}</script></span> as an induced subgraph of <span><span style=\"\">G_{N,p_2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.709ex\" role=\"img\" style=\"vertical-align: -0.905ex;\" viewbox=\"0 -777 2388.7 1166.5\" width=\"5.548ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(825,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-32\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{N,p_2}</script></span>, (ii) we show two-point concentration of the size of the maximum common induced subgraph of <span><span style=\"\">G_{N, p_1}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.906ex;\" viewbox=\"0 -778.3 2388.7 1168.4\" width=\"5.548ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(825,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-31\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{N, p_1}</script></span> and <span><span style=\"\">G_{N,p_2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.906ex;\" viewbox=\"0 -778.3 2388.7 1168.4\" width=\"5.548ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(825,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-32\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{N,p_2}</script></span>, and (iii) we show that the number of induced copies of <span><span style=\"\">G_{n,p_1}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.906ex;\" viewbox=\"0 -778.3 2185 1168.4\" width=\"5.075ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(621,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-31\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{n,p_1}</script></span> in <span><span style=\"\">G_{N,p_2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.906ex;\" viewbox=\"0 -778.3 2388.7 1168.4\" width=\"5.548ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><g transform=\"translate(786,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(825,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"712\" xlink:href=\"#MJMAIN-32\" y=\"-326\"></use></g></g></g></svg></span><script type=\"math/tex\">G_{N,p_2}</script></span> has an unusual limiting distribution. These results confirm simulation-based predictions of McCreesh, Prosser, Solnon and Trimble, and resolve several open problems of Chatterjee and Diaconis. The proofs are based on careful refinements of the first and second moment method, using extra twists to (a) take some non-standard behaviors into account, and (b) work around the large variance issues that prevent standard applications of these methods.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"33 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00157-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider two variants of the induced subgraph isomorphism problem for two independent binomial random graphs with constant edge-probabilities p_1,p_2. In particular, (i) we prove a sharp threshold result for the appearance of G_{n,p_1} as an induced subgraph of G_{N,p_2}, (ii) we show two-point concentration of the size of the maximum common induced subgraph of G_{N, p_1} and G_{N,p_2}, and (iii) we show that the number of induced copies of G_{n,p_1} in G_{N,p_2} has an unusual limiting distribution. These results confirm simulation-based predictions of McCreesh, Prosser, Solnon and Trimble, and resolve several open problems of Chatterjee and Diaconis. The proofs are based on careful refinements of the first and second moment method, using extra twists to (a) take some non-standard behaviors into account, and (b) work around the large variance issues that prevent standard applications of these methods.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.