{"title":"On the initial transition of graphs of Kirkman schedules by the partial team swap","authors":"Yusuke Kashiwagi, Masaki Yamamoto, Takamasa Yashima","doi":"10.1007/s10878-025-01329-9","DOIUrl":null,"url":null,"abstract":"<p>Kirkman schedule is one of the typical single round-robin (abbrev. SRR) tournaments. The partial team swap (abbrev. PTS) is one of the typical procedures of changing from an SRR tournament to another SRR tournament, which is used in local search for solving the traveling tournament problem. An SRR of <i>n</i> teams (of even number) can be represented by a 1-factorization of the complete graph <span><span style=\"\">K_n</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 1374.1 952.8\" width=\"3.192ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1201\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">K_n</script></span>. It is known that the 1-factorization of any Kirkman schedule is “perfect” when <span><span style=\"\">n=p+1</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -733.9 4161.5 994.3\" width=\"9.665ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"878\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1934\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use x=\"2660\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"3661\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n=p+1</script></span> for prime numbers <i>p</i>, meaning that any pair of 1-factors in the 1-factorization forms a Hamilton cycle <span><span style=\"\">C_n</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1240.1 995.9\" width=\"2.88ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1011\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">C_n</script></span> in <span><span style=\"\">K_n</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 1374.1 952.8\" width=\"3.192ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1201\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">K_n</script></span>, called a 2-edge-colored Hamilton cycle. We are concerned with the cycle structure after applying the PTS to Kirkman schedules, that is, how a 2-edge-colored Hamilton cycle <span><span style=\"\">C_n</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1240.1 995.9\" width=\"2.88ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1011\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">C_n</script></span> is decomposed into two 2-edge-colored cycles of length 2<i>d</i> and <span><span style=\"\">n-2d</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -778.3 2847.4 909.7\" width=\"6.613ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"822\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"2323\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n-2d</script></span>, say, <span><span style=\"\">C_{2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1539.6 995.9\" width=\"3.576ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{2d}</script></span> and <span><span style=\"\">C_{n-2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 2514.7 1039.1\" width=\"5.841ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1379\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1879\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{n-2d}</script></span> for some number <span><span style=\"\">d\\in [n/2]</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3905.1 1125.3\" width=\"9.07ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><use x=\"1746\" xlink:href=\"#MJMAIN-5B\" y=\"0\"></use><use x=\"2025\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"2625\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"3126\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"3626\" xlink:href=\"#MJMAIN-5D\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">d\\in [n/2]</script></span>. We characterize the numbers <i>d</i> such that any cycle <span><span style=\"\">C_{2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 1539.6 994.3\" width=\"3.576ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{2d}</script></span> is not generated by <i>any</i> PTS. Moreover, in case that a cycle <span><span style=\"\">C_{2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 1539.6 994.3\" width=\"3.576ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{2d}</script></span> is generated, we show that the number of <span><span style=\"\">C_{2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1539.6 995.9\" width=\"3.576ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{2d}</script></span> for any <span><span style=\"\">d\\ne n/4</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3459.1 1125.3\" width=\"8.034ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-2260\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"2458\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"2958\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">d\\ne n/4</script></span> generated by any PTS is at most <span><span style=\"\">n-2</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -735.2 2323.9 866.5\" width=\"5.398ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"822\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n-2</script></span>. For the case of <span><span style=\"\">d=n/4</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3459.1 1125.3\" width=\"8.034ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"2458\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"2958\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">d=n/4</script></span> (i.e., <span><span style=\"\">C_{n/2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.814ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -778.3 1947.9 1211.6\" width=\"4.524ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-187)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1101\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{n/2}</script></span>), the number of <span><span style=\"\">C_{n/2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.809ex\" role=\"img\" style=\"vertical-align: -1.005ex;\" viewbox=\"0 -777 1947.9 1209.6\" width=\"4.524ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-187)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1101\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{n/2}</script></span> generated by any PTS is at most <span><span style=\"\">2(n-2)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 3603.4 1123.4\" width=\"8.369ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"890\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"1712\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"2713\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"3213\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">2(n-2)</script></span>, and there is some PTS to achieve the upper bound.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"43 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01329-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Kirkman schedule is one of the typical single round-robin (abbrev. SRR) tournaments. The partial team swap (abbrev. PTS) is one of the typical procedures of changing from an SRR tournament to another SRR tournament, which is used in local search for solving the traveling tournament problem. An SRR of n teams (of even number) can be represented by a 1-factorization of the complete graph K_n. It is known that the 1-factorization of any Kirkman schedule is “perfect” when n=p+1 for prime numbers p, meaning that any pair of 1-factors in the 1-factorization forms a Hamilton cycle C_n in K_n, called a 2-edge-colored Hamilton cycle. We are concerned with the cycle structure after applying the PTS to Kirkman schedules, that is, how a 2-edge-colored Hamilton cycle C_n is decomposed into two 2-edge-colored cycles of length 2d and n-2d, say, C_{2d} and C_{n-2d} for some number d\in [n/2]. We characterize the numbers d such that any cycle C_{2d} is not generated by any PTS. Moreover, in case that a cycle C_{2d} is generated, we show that the number of C_{2d} for any d\ne n/4 generated by any PTS is at most n-2. For the case of d=n/4 (i.e., C_{n/2}), the number of C_{n/2} generated by any PTS is at most 2(n-2), and there is some PTS to achieve the upper bound.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.