{"title":"Bivalent quadratic optimization with sum-of-square of quadratic penalties","authors":"Tongli Zhang, Yong Xia","doi":"10.1007/s10878-025-01339-7","DOIUrl":null,"url":null,"abstract":"<p>The problem of maximizing the sum-of-square of quadratic functions with bivalent variables, denoted by (P), arises from bivalent quadratic optimization with <i>K</i> quadratic disjunctive penalties. Though NP-hard in general, (P) is polynomially solvable when the input matrices can concatenate to a fixed-rank matrix. We present a nonconvex quadratic semidefinite programming (SDP) relaxation, which provides a 0.4-approximate solution for (P). We show that the quadratic SDP relaxation can be approximately and globally solved to a precision <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>&#x03F5;</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 406.5 607.8\" width=\"0.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ϵ</mi></math></span></span><script type=\"math/tex\">\\epsilon </script></span> via solving at most <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>O</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mi>K</mi><msup><mi>n</mi><mn>3</mn></msup><mrow><mo>/</mo></mrow><mi>&#x03F5;</mi><msup><mo stretchy=\"false\">)</mo><mrow><mi>K</mi><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.914ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -950.8 6609.2 1254.7\" width=\"15.35ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use><use x=\"763\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1153\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1542\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><g transform=\"translate(2432,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"849\" xlink:href=\"#MJMAIN-33\" y=\"513\"></use></g><use x=\"3486\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"3986\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"></use><g transform=\"translate(4393,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><g transform=\"translate(389,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"889\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1389\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></g><use x=\"6219\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>O</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mi>K</mi><msup><mi>n</mi><mn>3</mn></msup><mrow><mo>/</mo></mrow><mi>ϵ</mi><msup><mo stretchy=\"false\">)</mo><mrow><mi>K</mi><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">O((Kn^3/\\epsilon )^{K/2})</script></span> linear SDP subproblems.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"142 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01339-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of maximizing the sum-of-square of quadratic functions with bivalent variables, denoted by (P), arises from bivalent quadratic optimization with K quadratic disjunctive penalties. Though NP-hard in general, (P) is polynomially solvable when the input matrices can concatenate to a fixed-rank matrix. We present a nonconvex quadratic semidefinite programming (SDP) relaxation, which provides a 0.4-approximate solution for (P). We show that the quadratic SDP relaxation can be approximately and globally solved to a precision via solving at most linear SDP subproblems.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.