Maximum expert consensus models with both type- $$\alpha $$ and type- $$\varepsilon $$ constraints

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dong Cheng, Huina Zhang, Yong Wu
{"title":"Maximum expert consensus models with both type- $$\\alpha $$ and type- $$\\varepsilon $$ constraints","authors":"Dong Cheng, Huina Zhang, Yong Wu","doi":"10.1007/s10878-025-01342-y","DOIUrl":null,"url":null,"abstract":"<p>The maximum expert consensus model (MECM) aims to maximize the number of consensual decision-makers (DMs) within a limited budget. However, it may fail to achieve high group satisfaction or even cannot reach an acceptable consensus due to its neglect of the group consensus level, resulting in type-<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 640.5 607.8\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3B1\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math></span></span><script type=\"math/tex\">\\alpha </script></span> constraints not being satisfied. To address this issue, we extend the existing MECM by considering both type-<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 640.5 607.8\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3B1\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math></span></span><script type=\"math/tex\">\\alpha </script></span> and type-<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mtext&gt;&amp;#x03B5;&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 466.5 607.8\" width=\"1.083ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3B5\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>ε</mtext></mrow></math></span></span><script type=\"math/tex\">\\varepsilon </script></span> consensus constraints to enable the group consensus level and the number of consensual DMs as large as possible. Firstly, we construct a dual-MECM that considers the above two constraints. Secondly, we further develop a dual-MECM considering compromise limits (dual-MECM-CL). To provide a reference for budgeting, a dual minimum cost consensus model (dual-MCCM) is established to determine the upper and lower bounds of the budget. Subsequently, we explore the relationships between the two proposed MECMs and the existing MECM. Finally, the effectiveness of the proposed models is illustrated by numerical examples. The results show that: (1) The dual-MECM can ensure that the majority of DMs reach consensus while maintaining a high group consensus level. (2) With a limited budget, the improvement of the overall consensus level will lead to the reduction in the number of consensual DMs. (3) Consideration of individual compromise limits may reduce the number of consensual DMs within the same budget. Therefore, the proposed models can derive a more reasonable consensus result due to full consideration of consensus measurements and DMs’ behaviors.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"46 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01342-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The maximum expert consensus model (MECM) aims to maximize the number of consensual decision-makers (DMs) within a limited budget. However, it may fail to achieve high group satisfaction or even cannot reach an acceptable consensus due to its neglect of the group consensus level, resulting in type-α constraints not being satisfied. To address this issue, we extend the existing MECM by considering both type-α and type-ε consensus constraints to enable the group consensus level and the number of consensual DMs as large as possible. Firstly, we construct a dual-MECM that considers the above two constraints. Secondly, we further develop a dual-MECM considering compromise limits (dual-MECM-CL). To provide a reference for budgeting, a dual minimum cost consensus model (dual-MCCM) is established to determine the upper and lower bounds of the budget. Subsequently, we explore the relationships between the two proposed MECMs and the existing MECM. Finally, the effectiveness of the proposed models is illustrated by numerical examples. The results show that: (1) The dual-MECM can ensure that the majority of DMs reach consensus while maintaining a high group consensus level. (2) With a limited budget, the improvement of the overall consensus level will lead to the reduction in the number of consensual DMs. (3) Consideration of individual compromise limits may reduce the number of consensual DMs within the same budget. Therefore, the proposed models can derive a more reasonable consensus result due to full consideration of consensus measurements and DMs’ behaviors.

具有类型- $$\alpha $$和类型- $$\varepsilon $$约束的最大专家共识模型
最大专家共识模型(MECM)的目标是在有限的预算范围内实现共识决策者(dm)数量的最大化。然而,由于忽略了群体共识水平,它可能无法获得较高的群体满意度,甚至无法达成可接受的共识,从而导致-α \alpha类型约束不被满足。为了解决这一问题,我们通过考虑-α \alpha型和-ε \varepsilon型共识约束来扩展现有的MECM,以使群体共识水平和共识dm的数量尽可能大。首先,我们构建了一个考虑上述两个约束的双mecm。其次,我们进一步开发了考虑折衷限制的双mecm (dual-MECM- cl)。为了给预算提供参考,建立了双最小成本共识模型(dual- mcm)来确定预算的上界和下界。随后,我们探讨了两个拟议的MECM和现有MECM之间的关系。最后,通过数值算例说明了所提模型的有效性。结果表明:(1)双mecm可以保证大多数dm达成共识,同时保持较高的群体共识水平。(2)在预算有限的情况下,总体共识水平的提高会导致共识dm数量的减少。(3)考虑个人妥协限度可能会减少同一预算内双方同意的决策决策的数量。因此,由于充分考虑了共识度量和决策主体的行为,所提出的模型可以得出更合理的共识结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信