{"title":"Hardness and algorithms for several new optimization problems on the weighted massively parallel computation model","authors":"Hengzhao Ma, Jianzhong Li","doi":"10.1007/s10878-025-01297-0","DOIUrl":null,"url":null,"abstract":"<p>The topology-aware Massively Parallel Computation (MPC) model is proposed and studied recently, which enhances the classical MPC model by the awareness of network topology. The work of Hu et. al. on topology-aware MPC model considers only the tree topology. In this paper a more general case is considered, where the underlying network is a weighted complete graph. We then call this model as Weighted Massively Parallel Computation (WMPC) model, and study the problem of minimizing communication cost under it. Three communication cost minimization problems are defined based on different patterns of communication, which are the Data Redistribution Problem, Data Allocation Problem on Continuous data, and Data Allocation Problem on Categorized data. We also define four kinds of objective functions for communication cost, which consider the total cost, bottleneck cost, maximum of send and receive cost, and summation of send and receive cost, respectively. Combining the three problems in different communication patterns with the four kinds of objective cost functions, 12 problems are obtained. The hardness results and algorithms of the 12 problems make up the content of this paper. With rigorous proof, we prove that some of the 12 problems are in P, some FPT, some NP-complete, and some W[1]-complete. Approximate algorithms are proposed for several selected problems.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"51 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01297-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The topology-aware Massively Parallel Computation (MPC) model is proposed and studied recently, which enhances the classical MPC model by the awareness of network topology. The work of Hu et. al. on topology-aware MPC model considers only the tree topology. In this paper a more general case is considered, where the underlying network is a weighted complete graph. We then call this model as Weighted Massively Parallel Computation (WMPC) model, and study the problem of minimizing communication cost under it. Three communication cost minimization problems are defined based on different patterns of communication, which are the Data Redistribution Problem, Data Allocation Problem on Continuous data, and Data Allocation Problem on Categorized data. We also define four kinds of objective functions for communication cost, which consider the total cost, bottleneck cost, maximum of send and receive cost, and summation of send and receive cost, respectively. Combining the three problems in different communication patterns with the four kinds of objective cost functions, 12 problems are obtained. The hardness results and algorithms of the 12 problems make up the content of this paper. With rigorous proof, we prove that some of the 12 problems are in P, some FPT, some NP-complete, and some W[1]-complete. Approximate algorithms are proposed for several selected problems.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.