{"title":"Hybrid quantum-enhanced reinforcement learning for energy-efficient resource allocation in fog-edge computing","authors":"S. Sureka Nithila Princy, Paulraj Ranjith kumar","doi":"10.1007/s10878-025-01336-w","DOIUrl":null,"url":null,"abstract":"<p>The proliferation of Internet of Things (IoT) devices has intensified the need for intelligent, adaptive, and energy-efficient resource management across mobile edge–fog–cloud infrastructures. Conventional optimization approaches often fail to manage the dynamic interplay among fluctuating workloads, energy constraints, and real-time scheduling. To address this, a Hybrid Quantum-Enhanced Reinforcement Learning (HQERL) framework is introduced, unifying quantum-inspired heuristics, swarm intelligence, and reinforcement learning into a co-adaptive sched uling system. HQERL employs a feedback-driven architecture to synchronize exploration, optimization, and policy refinement for enhanced task scheduling and resource control. The Maximum Likelihood Swarm Whale Optimization (MLSWO) module encodes dynamic task and system states using swarm intelligence guided by statistical likelihood, generating information-rich inputs for the learning controller. To prevent premature convergence and expand the scheduling search space, the Quantum Brainstorm Optimization (QBO) component incorporates probabilistic memory and collective learning to diversify scheduling solutions. These enhanced representations and exploratory strategies feed into the Proximal Policy Optimization (PPO) controller, which dynamically adapts resource allocation policies in real time based on system feedback, ensuring resilience to workload shifts. Furthermore, Dynamic Voltage Scaling (DVS) is integrated to improve energy efficiency by adjusting processor voltages and frequencies according to workload demands. This seamless coordination enables HQERL to balance task latency, resource use, and power consumption. Evaluation on the LSApp dataset reveals HQERL yields a 15% energy efficiency gain, 12% makespan reduction, and a 23.3% boost in peak system utility, validating its effectiveness for sustainable IoT resource management.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"13 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01336-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The proliferation of Internet of Things (IoT) devices has intensified the need for intelligent, adaptive, and energy-efficient resource management across mobile edge–fog–cloud infrastructures. Conventional optimization approaches often fail to manage the dynamic interplay among fluctuating workloads, energy constraints, and real-time scheduling. To address this, a Hybrid Quantum-Enhanced Reinforcement Learning (HQERL) framework is introduced, unifying quantum-inspired heuristics, swarm intelligence, and reinforcement learning into a co-adaptive sched uling system. HQERL employs a feedback-driven architecture to synchronize exploration, optimization, and policy refinement for enhanced task scheduling and resource control. The Maximum Likelihood Swarm Whale Optimization (MLSWO) module encodes dynamic task and system states using swarm intelligence guided by statistical likelihood, generating information-rich inputs for the learning controller. To prevent premature convergence and expand the scheduling search space, the Quantum Brainstorm Optimization (QBO) component incorporates probabilistic memory and collective learning to diversify scheduling solutions. These enhanced representations and exploratory strategies feed into the Proximal Policy Optimization (PPO) controller, which dynamically adapts resource allocation policies in real time based on system feedback, ensuring resilience to workload shifts. Furthermore, Dynamic Voltage Scaling (DVS) is integrated to improve energy efficiency by adjusting processor voltages and frequencies according to workload demands. This seamless coordination enables HQERL to balance task latency, resource use, and power consumption. Evaluation on the LSApp dataset reveals HQERL yields a 15% energy efficiency gain, 12% makespan reduction, and a 23.3% boost in peak system utility, validating its effectiveness for sustainable IoT resource management.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.