{"title":"An improvement on the Louvain algorithm using random walks","authors":"Duy Hieu Do, Thi Ha Duong Phan","doi":"10.1007/s10878-025-01337-9","DOIUrl":null,"url":null,"abstract":"<p>We present improvements to famous algorithms for community detection, namely Newman’s spectral method algorithm and the Louvain algorithm. The Newman algorithm begins by treating the original graph as a single cluster, then repeats the process to split each cluster into two, based on the signs of the eigenvector corresponding to the second-largest eigenvalue. Our improvement involves replacing the time-consuming computation of eigenvalues with a random walk during the splitting process. The Louvain algorithm iteratively performs the following steps until no increase in modularity can be achieved anymore: each step consists of two phases–phase 1 for partitioning the graph into clusters, and phase 2 for constructing a new graph where each vertex represents one cluster obtained from phase 1. We propose an improvement to this algorithm by adding our random walk algorithm as an additional phase for refining clusters obtained from phase 1. It maintains a complexity comparable to the Louvain algorithm while exhibiting superior efficiency. To validate the robustness and effectiveness of our proposed algorithms, we conducted experiments using randomly generated graphs and real-world data.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"38 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01337-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We present improvements to famous algorithms for community detection, namely Newman’s spectral method algorithm and the Louvain algorithm. The Newman algorithm begins by treating the original graph as a single cluster, then repeats the process to split each cluster into two, based on the signs of the eigenvector corresponding to the second-largest eigenvalue. Our improvement involves replacing the time-consuming computation of eigenvalues with a random walk during the splitting process. The Louvain algorithm iteratively performs the following steps until no increase in modularity can be achieved anymore: each step consists of two phases–phase 1 for partitioning the graph into clusters, and phase 2 for constructing a new graph where each vertex represents one cluster obtained from phase 1. We propose an improvement to this algorithm by adding our random walk algorithm as an additional phase for refining clusters obtained from phase 1. It maintains a complexity comparable to the Louvain algorithm while exhibiting superior efficiency. To validate the robustness and effectiveness of our proposed algorithms, we conducted experiments using randomly generated graphs and real-world data.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.