Spanning Spheres in Dirac Hypergraphs

IF 1 2区 数学 Q1 MATHEMATICS
Freddie Illingworth, Richard Lang, Alp Müyesser, Olaf Parczyk, Amedeo Sgueglia
{"title":"Spanning Spheres in Dirac Hypergraphs","authors":"Freddie Illingworth, Richard Lang, Alp Müyesser, Olaf Parczyk, Amedeo Sgueglia","doi":"10.1007/s00493-025-00169-9","DOIUrl":null,"url":null,"abstract":"<p>We show that a <i>k</i>-uniform hypergraph on <i>n</i> vertices has a spanning subgraph homeomorphic to the <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3023.9 1125.3\" width=\"7.023ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"1133\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"2133\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"2634\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(k - 1)</script></span>-dimensional sphere provided that <i>H</i> has no isolated vertices and each set of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.109ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -777 2244.9 908.2\" width=\"5.214ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"743\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"1744\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">k - 1</script></span> vertices supported by an edge is contained in at least <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 4689.4 1123.4\" width=\"10.892ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"600\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"1101\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"2824\" xlink:href=\"#MJMATHI-6F\" y=\"0\"></use><use x=\"3309\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"3699\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"4299\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n/2 + o(n)</script></span> edges. This gives a topological extension of Dirac’s theorem and asymptotically confirms a conjecture of Georgakopoulos, Haslegrave, Montgomery, and Narayanan. Unlike typical results in the area, our proof does not rely on the Absorption Method, the Regularity Lemma or the Blow-up Lemma. Instead, we use a recently introduced framework that is based on covering the vertex set of the host graph with a family of complete blow-ups.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"62 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00169-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that a k-uniform hypergraph on n vertices has a spanning subgraph homeomorphic to the -dimensional sphere provided that H has no isolated vertices and each set of vertices supported by an edge is contained in at least edges. This gives a topological extension of Dirac’s theorem and asymptotically confirms a conjecture of Georgakopoulos, Haslegrave, Montgomery, and Narayanan. Unlike typical results in the area, our proof does not rely on the Absorption Method, the Regularity Lemma or the Blow-up Lemma. Instead, we use a recently introduced framework that is based on covering the vertex set of the host graph with a family of complete blow-ups.

狄拉克超图中的跨球
我们证明了n个顶点上的k-一致超图具有一个与(k - 1)维球面同胚的生成子图,条件是H没有孤立的顶点,并且由一条边支撑的k- 1个顶点的每一组至少包含在n/2 + o(n)条边中。这给出了狄拉克定理的拓扑推广,并渐近地证实了Georgakopoulos、Haslegrave、Montgomery和Narayanan的一个猜想。与该领域的典型结果不同,我们的证明不依赖于吸收法、正则引理或放大引理。相反,我们使用最近引入的一个框架,该框架基于用一组完全放大覆盖宿主图的顶点集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信