Natalie Behague, Joseph Hyde, Natasha Morrison, Jonathan A. Noel, Ashna Wright
{"title":"An Approximate Counting Version of the Multidimensional Szemerédi Theorem","authors":"Natalie Behague, Joseph Hyde, Natasha Morrison, Jonathan A. Noel, Ashna Wright","doi":"10.1007/s00493-025-00167-x","DOIUrl":null,"url":null,"abstract":"<p>For any fixed <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 2358.1 995.9\" width=\"5.477ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">d\\ge 1</script></span> and subset <i>X</i> of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -950.8 1192.7 1039.1\" width=\"2.77ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJAMS-4E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1021\" xlink:href=\"#MJMATHI-64\" y=\"581\"></use></g></svg></span><script type=\"math/tex\">\\mathbb {N}^d</script></span>, let <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 2533.8 1125.3\" width=\"5.885ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"638\" xlink:href=\"#MJMATHI-58\" y=\"-213\"></use><use x=\"1154\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1543\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"2144\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">r_X(n)</script></span> be the maximum cardinality of a subset <i>A</i> of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.814ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -907.7 4801.7 1211.6\" width=\"11.152ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-7B\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1446\" xlink:href=\"#MJMAIN-2026\" y=\"0\"></use><use x=\"2785\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"3230\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(3831,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-7D\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"707\" xlink:href=\"#MJMATHI-64\" y=\"513\"></use></g></g></svg></span><script type=\"math/tex\">\\{1,\\dots,n\\}^d</script></span> which does not contain a subset of the form <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -778.3 2999.6 909.7\" width=\"6.967ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g><use x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use></g><use x=\"43\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use x=\"694\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"1695\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use x=\"2147\" xlink:href=\"#MJMATHI-58\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\varvec{b} + rX</script></span> for <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 2286.1 823.4\" width=\"5.31ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use x=\"729\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"1785\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">r>0</script></span> and <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -950.8 2888.4 1039.1\" width=\"6.708ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g><use x=\"0\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use></g><use x=\"43\" xlink:href=\"#MJMATHI-62\" y=\"0\"></use><use x=\"750\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><g transform=\"translate(1695,0)\"><use x=\"0\" xlink:href=\"#MJAMS-52\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1021\" xlink:href=\"#MJMATHI-64\" y=\"581\"></use></g></g></svg></span><script type=\"math/tex\">\\varvec{b} \\in \\mathbb {R}^d</script></span>. Such a set <i>A</i> is said to be <i>X-free</i>. The Multidimensional Szemerédi Theorem of Furstenberg and Katznelson states that <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.809ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -906.2 6203 1209.6\" width=\"14.407ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"638\" xlink:href=\"#MJMATHI-58\" y=\"-213\"></use><use x=\"1154\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1543\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"2144\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"2811\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"3867\" xlink:href=\"#MJMATHI-6F\" y=\"0\"></use><use x=\"4353\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(4742,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"849\" xlink:href=\"#MJMATHI-64\" y=\"513\"></use></g><use x=\"5813\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">r_X(n)=o(n^d)</script></span>. We show that, for <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3244.1 1125.3\" width=\"7.535ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-7C\" y=\"0\"></use><use x=\"278\" xlink:href=\"#MJMATHI-58\" y=\"0\"></use><use x=\"1131\" xlink:href=\"#MJMAIN-7C\" y=\"0\"></use><use x=\"1687\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"2743\" xlink:href=\"#MJMAIN-33\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">|X|\\ge 3</script></span> and infinitely many <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 2546.1 823.4\" width=\"5.913ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"878\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJAMS-4E\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n\\in \\mathbb {N}</script></span>, the number of <i>X</i>-free subsets of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.814ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -907.7 4801.7 1211.6\" width=\"11.152ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-7B\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"1001\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1446\" xlink:href=\"#MJMAIN-2026\" y=\"0\"></use><use x=\"2785\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"3230\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(3831,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-7D\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"707\" xlink:href=\"#MJMATHI-64\" y=\"513\"></use></g></g></svg></span><script type=\"math/tex\">\\{1,\\dots,n\\}^d</script></span> is at most <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.513ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -993.9 3482.9 1082.2\" width=\"8.089ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><g transform=\"translate(500,393)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"763\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(815,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"638\" xlink:href=\"#MJMATHI-58\" y=\"-213\"></use></g><use transform=\"scale(0.707)\" x=\"2307\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2696\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"3297\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"3686\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">2^{O(r_X(n))}</script></span>. The proof involves using a known multidimensional extension of Behrend’s construction to obtain a supersaturation theorem for copies of <i>X</i> in dense subsets of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.809ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -906.2 1627.7 1209.6\" width=\"3.78ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-5B\" y=\"0\"></use><use x=\"278\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(879,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-5D\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"393\" xlink:href=\"#MJMATHI-64\" y=\"513\"></use></g></g></svg></span><script type=\"math/tex\">[n]^d</script></span> for infinitely many values of <i>n</i> and then applying the powerful hypergraph container lemma. Our result generalizes work of Balogh, Liu, and Sharifzadeh on <i>k</i>-AP-free sets and Kim on corner-free sets.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00167-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For any fixed and subset X of , let be the maximum cardinality of a subset A of which does not contain a subset of the form for and . Such a set A is said to be X-free. The Multidimensional Szemerédi Theorem of Furstenberg and Katznelson states that . We show that, for and infinitely many , the number of X-free subsets of is at most . The proof involves using a known multidimensional extension of Behrend’s construction to obtain a supersaturation theorem for copies of X in dense subsets of for infinitely many values of n and then applying the powerful hypergraph container lemma. Our result generalizes work of Balogh, Liu, and Sharifzadeh on k-AP-free sets and Kim on corner-free sets.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.