Graph Minors and Metric Spaces

IF 1 2区 数学 Q1 MATHEMATICS
Agelos Georgakopoulos, Panos Papasoglu
{"title":"Graph Minors and Metric Spaces","authors":"Agelos Georgakopoulos, Panos Papasoglu","doi":"10.1007/s00493-025-00150-6","DOIUrl":null,"url":null,"abstract":"<p>We present problems and results that combine graph-minors and coarse geometry. For example, we ask whether every geodesic metric space (or graph) without a fat <i>H</i> minor is quasi-isometric to a graph with no <i>H</i> minor, for an arbitrary finite graph <i>H</i>. We answer this affirmatively for a few small <i>H</i>. We also present a metric analogue of Menger’s theorem and König’s ray theorem. We conjecture metric analogues of the Erdős–Pósa Theorem and Halin’s grid theorem.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"72 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00150-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present problems and results that combine graph-minors and coarse geometry. For example, we ask whether every geodesic metric space (or graph) without a fat H minor is quasi-isometric to a graph with no H minor, for an arbitrary finite graph H. We answer this affirmatively for a few small H. We also present a metric analogue of Menger’s theorem and König’s ray theorem. We conjecture metric analogues of the Erdős–Pósa Theorem and Halin’s grid theorem.

图次元与度量空间
我们提出了结合图子和粗几何的问题和结果。例如,对于任意有限图H,我们问是否每个没有大H次的测地线度量空间(或图)与没有H次的图是拟等距的。对于一些小H,我们肯定地回答了这个问题。我们还提出了门格尔定理和König射线定理的度量模拟。我们推测了Erdős-Pósa定理和Halin网格定理的度量类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信