{"title":"Partitioning a tournament into sub-tournaments of high connectivity","authors":"António Girão, Shoham Letzter","doi":"10.1007/s00493-025-00161-3","DOIUrl":null,"url":null,"abstract":"<p>We prove that there exists a constant <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 2268.1 823.4\" width=\"5.268ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-63\" y=\"0\"></use><use x=\"711\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"1767\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">c > 0</script></span> such that the vertices of every strongly <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 2039.4 866.5\" width=\"4.737ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-63\" y=\"0\"></use><use x=\"655\" xlink:href=\"#MJMAIN-22C5\" y=\"0\"></use><use x=\"1156\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"1677\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">c \\cdot kt</script></span>-connected tournament can be partitioned into <i>t</i> parts, each of which induces a strongly <i>k</i>-connected tournament. This is clearly tight up to a constant factor, and it confirms a conjecture of Kühn, Osthus and Townsend (2016).</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"38 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00161-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that there exists a constant such that the vertices of every strongly -connected tournament can be partitioned into t parts, each of which induces a strongly k-connected tournament. This is clearly tight up to a constant factor, and it confirms a conjecture of Kühn, Osthus and Townsend (2016).
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.