{"title":"On r-wise t-intersecting Uniform Families","authors":"Peter Frankl, Jian Wang","doi":"10.1007/s00493-025-00166-y","DOIUrl":null,"url":null,"abstract":"<p>We consider families, <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 829.5 823.4\" width=\"1.927ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJCAL-46\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\mathcal {F}</script></span> of <i>k</i>-subsets of an <i>n</i>-set. For integers <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 2286.1 952.8\" width=\"5.31ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use x=\"729\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1785\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">r\\ge 2</script></span>, <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 2196.1 952.8\" width=\"5.101ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><use x=\"639\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1695\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">t\\ge 1</script></span>, <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 829.5 823.4\" width=\"1.927ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJCAL-46\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\mathcal {F}</script></span> is called <i>r</i>-wise <i>t</i>-intersecting if any <i>r</i> of its members have at least <i>t</i> elements in common. The most natural construction of such a family is the full <i>t</i>-star, consisting of all <i>k</i>-sets containing a fixed <i>t</i>-set. In the case <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 2286.1 823.4\" width=\"5.31ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use x=\"729\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1785\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">r=2</script></span> the Exact Erdős-Ko-Rado Theorem shows that the full <i>t</i>-star is largest if <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 9406.9 1125.3\" width=\"21.848ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"878\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1934\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"2324\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><use x=\"2907\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"3908\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"4409\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"4798\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"5188\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"5931\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"6932\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><use x=\"7516\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"8516\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"9017\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n\\ge (t+1)(k-t+1)</script></span>. In the present paper, we prove that for <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.914ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -950.8 11566.2 1254.7\" width=\"26.864ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"878\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1934\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(2324,0)\"><use xlink:href=\"#MJMAIN-32\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use></g><use x=\"3603\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><g transform=\"translate(3965,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><g transform=\"translate(389,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1001\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1390\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1842\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2620\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"3121\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g><use x=\"6936\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"7326\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"8070\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"9070\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><use x=\"9432\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"10044\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"11044\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n\\ge (2.5t)^{1/(r-1)}(k-t)+k</script></span>, the full <i>t</i>-star is largest in case of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 2286.1 952.8\" width=\"5.31ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use x=\"729\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1785\" xlink:href=\"#MJMAIN-33\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">r\\ge 3</script></span>. Examples show that the exponent <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.309ex\" role=\"img\" style=\"vertical-align: -1.105ex;\" viewbox=\"0 -949.2 1583.6 1424.8\" width=\"3.678ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"1343\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"699\" xlink:href=\"#MJMAIN-31\" y=\"556\"></use><g transform=\"translate(60,-363)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"451\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1230\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/tex\">\\frac{1}{r-1}</script></span> is best possible. This represents a considerable improvement on a recent result of Balogh and Linz.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"50 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00166-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider families, of k-subsets of an n-set. For integers , , is called r-wise t-intersecting if any r of its members have at least t elements in common. The most natural construction of such a family is the full t-star, consisting of all k-sets containing a fixed t-set. In the case the Exact Erdős-Ko-Rado Theorem shows that the full t-star is largest if . In the present paper, we prove that for , the full t-star is largest in case of . Examples show that the exponent is best possible. This represents a considerable improvement on a recent result of Balogh and Linz.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.