Multifunctional Binding Interface Drives Near-Unity CO Selectivity in Acidic CO2 Electrolysis.

IF 16.9
Zhengyuan Li, Yuting Xu, Xing Li, Gregory D Y Foley, Dian-Zhao Lin, Lingyu Zhang, Krish N Jayarapu, Long Chen, Carter S Gerke, Andong Liu, Anmol Mathur, Zhiyao Qi, Lavanya Gupta, Van Sara Thoi, Fanglin Che, Yayuan Liu
{"title":"Multifunctional Binding Interface Drives Near-Unity CO Selectivity in Acidic CO<sub>2</sub> Electrolysis.","authors":"Zhengyuan Li, Yuting Xu, Xing Li, Gregory D Y Foley, Dian-Zhao Lin, Lingyu Zhang, Krish N Jayarapu, Long Chen, Carter S Gerke, Andong Liu, Anmol Mathur, Zhiyao Qi, Lavanya Gupta, Van Sara Thoi, Fanglin Che, Yayuan Liu","doi":"10.1002/anie.202514111","DOIUrl":null,"url":null,"abstract":"<p><p>The electrocatalytic carbon dioxide (CO<sub>2</sub>) reduction is challenged by the parasitic hydrogen evolution reaction (HER) especially in acidic media. Here, we elaborate that redox-active isoindigo, acting as a multifunctional co-catalyst, can pre-activate CO<sub>2</sub>-bound intermediates and suppress HER upon the synergistic effects of Lewis acid-base adduct formation, intramolecular hydrogen-bond interaction, and interfacial water structure modulation. Modifying a silver catalyst with isoindigo substantially decreases the energy barrier for CO<sub>2</sub>-to-*COOH conversion, which is regarded as the potential-limiting step of carbon monoxide production. Accordingly, superior catalytic performances are obtained at pH 2, where Faradaic efficiencies surpass 99% at industrial-relevant current densities. Moreover, we find that assembling an additional polyamine-coated layer in front of gas flow channels improves CO<sub>2</sub> transport to the catalyst layer, optimizing the trade-off of conversion and selectivity at low flow rates.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202514111"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202514111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic carbon dioxide (CO2) reduction is challenged by the parasitic hydrogen evolution reaction (HER) especially in acidic media. Here, we elaborate that redox-active isoindigo, acting as a multifunctional co-catalyst, can pre-activate CO2-bound intermediates and suppress HER upon the synergistic effects of Lewis acid-base adduct formation, intramolecular hydrogen-bond interaction, and interfacial water structure modulation. Modifying a silver catalyst with isoindigo substantially decreases the energy barrier for CO2-to-*COOH conversion, which is regarded as the potential-limiting step of carbon monoxide production. Accordingly, superior catalytic performances are obtained at pH 2, where Faradaic efficiencies surpass 99% at industrial-relevant current densities. Moreover, we find that assembling an additional polyamine-coated layer in front of gas flow channels improves CO2 transport to the catalyst layer, optimizing the trade-off of conversion and selectivity at low flow rates.

多功能结合界面驱动酸性CO2电解中近乎统一的CO选择性。
寄生析氢反应(HER)对电催化二氧化碳(CO2)还原产生了挑战,特别是在酸性介质中。本文详细阐述了氧化还原活性等靛蓝作为多功能助催化剂,可以通过Lewis酸碱加合物形成、分子内氢键相互作用和界面水结构调制的协同作用,预激活co2结合中间体并抑制HER。用等靛蓝修饰银催化剂大大降低了CO2-to-*COOH转化的能垒,这被认为是一氧化碳生成的潜在限制步骤。因此,在pH为2的条件下获得了优异的催化性能,在工业相关电流密度下,法拉第效率超过99%。此外,我们发现在气体流动通道前组装额外的聚胺包覆层可以改善二氧化碳向催化剂层的输送,从而优化低流速下的转化率和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信