Improving Biomedical Knowledge Graph Quality: A Community Approach.

ArXiv Pub Date : 2025-08-29
Katherina G Cortes, Shilpa Sundar, Sarah Gehrke, Keenan Manpearl, Junxia Lin, Daniel Robert Korn, Harry Caufield, Kevin Schaper, Justin Reese, Kushal Koirala, Lawrence E Hunter, E Kathleen Carter, Marcello DeLuca, Arjun Krishnan, Chris Mungall, Melissa Haendel
{"title":"Improving Biomedical Knowledge Graph Quality: A Community Approach.","authors":"Katherina G Cortes, Shilpa Sundar, Sarah Gehrke, Keenan Manpearl, Junxia Lin, Daniel Robert Korn, Harry Caufield, Kevin Schaper, Justin Reese, Kushal Koirala, Lawrence E Hunter, E Kathleen Carter, Marcello DeLuca, Arjun Krishnan, Chris Mungall, Melissa Haendel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical knowledge graphs (KGs) are widely used across research and translational settings, yet their design decisions and implementation are often opaque. Unlike ontologies that more frequently adhere to established creation principles, biomedical KGs lack consistent practices for construction, documentation, and dissemination. To address this gap, we introduce a set of evaluation criteria grounded in widely accepted data standards and principles from related fields. We apply these criteria to 16 biomedical KGs, revealing that even those that appear to align with best practices often obscure essential information required for external reuse. Moreover, biomedical KGs, despite pursuing similar goals and ingesting the same sources in some cases, display substantial variation in models, source integration, and terminology for node types. Reaping the potential benefits of knowledge graphs for biomedical research while reducing duplicated effort requires community-wide adoption of shared criteria and maturation of standards such as Biolink and KGX. Such improvements in transparency and standardization are essential for creating long-term reusability, improving comparability across resources, providing a rigorous foundation for artificial intelligence models, and enhancing the overall utility of KGs within biomedicine.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomedical knowledge graphs (KGs) are widely used across research and translational settings, yet their design decisions and implementation are often opaque. Unlike ontologies that more frequently adhere to established creation principles, biomedical KGs lack consistent practices for construction, documentation, and dissemination. To address this gap, we introduce a set of evaluation criteria grounded in widely accepted data standards and principles from related fields. We apply these criteria to 16 biomedical KGs, revealing that even those that appear to align with best practices often obscure essential information required for external reuse. Moreover, biomedical KGs, despite pursuing similar goals and ingesting the same sources in some cases, display substantial variation in models, source integration, and terminology for node types. Reaping the potential benefits of knowledge graphs for biomedical research while reducing duplicated effort requires community-wide adoption of shared criteria and maturation of standards such as Biolink and KGX. Such improvements in transparency and standardization are essential for creating long-term reusability, improving comparability across resources, providing a rigorous foundation for artificial intelligence models, and enhancing the overall utility of KGs within biomedicine.

Abstract Image

Abstract Image

Abstract Image

提高生物医学知识图谱质量:一种社区方法。
生物医学知识图谱(KGs)广泛应用于研究和转化环境,但其设计决策和实施往往不透明。与经常遵循既定创建原则的本体不同,生物医学kg在构建、记录和传播方面缺乏一致的实践。为了解决这一差距,我们引入了一套基于相关领域广泛接受的数据标准和原则的评估标准。我们将这些标准应用于16个生物医学kg,发现即使那些看起来与最佳实践一致的kg也常常模糊了外部重用所需的基本信息。此外,生物医学kg尽管在某些情况下追求相似的目标并摄取相同的来源,但在模型、来源集成和节点类型术语方面表现出实质性的差异。要获得生物医学研究知识图谱的潜在好处,同时减少浪费的努力,就需要在社区范围内采用共享标准,并使BioLink和KGX等标准成熟。这种透明度和标准化方面的改进对于创建长期可重用性、提高资源之间的可比性以及增强生物医学中kg的整体效用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信