The Next Layer: Augmenting Foundation Models with Structure-Preserving and Attention-Guided Learning for Local Patches to Global Context Awareness in Computational Pathology.

ArXiv Pub Date : 2025-08-27
Muhammad Waqas, Rukhmini Bandyopadhyay, Eman Showkatian, Amgad Muneer, Anas Zafar, Frank Rojas Alvarez, Maricel Corredor Marin, Wentao Li, David Jaffray, Cara Haymaker, John Heymach, Natalie I Vokes, Luisa Maren Solis Soto, Jianjun Zhang, Jia Wu
{"title":"The Next Layer: Augmenting Foundation Models with Structure-Preserving and Attention-Guided Learning for Local Patches to Global Context Awareness in Computational Pathology.","authors":"Muhammad Waqas, Rukhmini Bandyopadhyay, Eman Showkatian, Amgad Muneer, Anas Zafar, Frank Rojas Alvarez, Maricel Corredor Marin, Wentao Li, David Jaffray, Cara Haymaker, John Heymach, Natalie I Vokes, Luisa Maren Solis Soto, Jianjun Zhang, Jia Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Foundation models have recently emerged as powerful feature extractors in computational pathology, yet they typically omit mechanisms for leveraging the global spatial structure of tissues and the local contextual relationships among diagnostically relevant regions - key elements for understanding the tumor microenvironment. Multiple instance learning (MIL) remains an essential next step following foundation model, designing a framework to aggregate patch-level features into slide-level predictions. We present EAGLE-Net, a structure-preserving, attention-guided MIL architecture designed to augment prediction and interpretability. EAGLE-Net integrates multi-scale absolute spatial encoding to capture global tissue architecture, a top-K neighborhood-aware loss to focus attention on local microenvironments, and background suppression loss to minimize false positives. We benchmarked EAGLE-Net on large pan-cancer datasets, including three cancer types for classification (10,260 slides) and seven cancer types for survival prediction (4,172 slides), using three distinct histology foundation backbones (REMEDIES, Uni-V1, Uni2-h). Across tasks, EAGLE-Net achieved up to 3% higher classification accuracy and the top concordance indices in 6 of 7 cancer types, producing smooth, biologically coherent attention maps that aligned with expert annotations and highlighted invasive fronts, necrosis, and immune infiltration. These results position EAGLE-Net as a generalizable, interpretable framework that complements foundation models, enabling improved biomarker discovery, prognostic modeling, and clinical decision support.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Foundation models have recently emerged as powerful feature extractors in computational pathology, yet they typically omit mechanisms for leveraging the global spatial structure of tissues and the local contextual relationships among diagnostically relevant regions - key elements for understanding the tumor microenvironment. Multiple instance learning (MIL) remains an essential next step following foundation model, designing a framework to aggregate patch-level features into slide-level predictions. We present EAGLE-Net, a structure-preserving, attention-guided MIL architecture designed to augment prediction and interpretability. EAGLE-Net integrates multi-scale absolute spatial encoding to capture global tissue architecture, a top-K neighborhood-aware loss to focus attention on local microenvironments, and background suppression loss to minimize false positives. We benchmarked EAGLE-Net on large pan-cancer datasets, including three cancer types for classification (10,260 slides) and seven cancer types for survival prediction (4,172 slides), using three distinct histology foundation backbones (REMEDIES, Uni-V1, Uni2-h). Across tasks, EAGLE-Net achieved up to 3% higher classification accuracy and the top concordance indices in 6 of 7 cancer types, producing smooth, biologically coherent attention maps that aligned with expert annotations and highlighted invasive fronts, necrosis, and immune infiltration. These results position EAGLE-Net as a generalizable, interpretable framework that complements foundation models, enabling improved biomarker discovery, prognostic modeling, and clinical decision support.

下一层:基于结构保留和注意力引导学习的基础模型在计算病理学中的局部斑块到全局上下文感知。
基础模型最近在计算病理学中作为强大的特征提取器出现,但它们通常忽略了利用组织的全局空间结构和诊断相关区域之间的局部上下文关系的机制-这是理解肿瘤微环境的关键要素。多实例学习(MIL)仍然是基础模型之后必不可少的下一步,设计一个框架将补丁级特征聚合到幻灯片级预测中。我们提出EAGLE-Net,一种结构保留、注意力引导的MIL架构,旨在增强预测和可解释性。EAGLE-Net集成了多尺度绝对空间编码以捕获全局组织结构,top-K邻域感知损失以将注意力集中在局部微环境上,背景抑制损失以减少误报。我们在大型泛癌症数据集上对EAGLE-Net进行基准测试,包括用于分类的三种癌症类型(10,260张幻灯片)和用于生存预测的七种癌症类型(4,172张幻灯片),使用三种不同的组织学基础主干(REMEDIES, Uni-V1, uni -h)。在不同的任务中,EAGLE-Net在7种癌症类型中的6种中实现了高达3%的分类准确率和最高的一致性指数,生成了平滑的、生物学上连贯的注意力图,与专家注释一致,突出了侵袭性前沿、坏死和免疫浸润。这些结果将EAGLE-Net定位为一个可推广、可解释的框架,补充了基础模型,使生物标志物发现、预后建模和临床决策支持得到改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信