Using PyBioNetFit to Leverage Qualitative and Quantitative Data in Biological Model Parameterization and Uncertainty Quantification.

ArXiv Pub Date : 2025-08-26
Ely F Miller, Abhishek Mallela, Jacob Neumann, Yen Ting Lin, William S Hlavacek, Richard G Posner
{"title":"Using PyBioNetFit to Leverage Qualitative and Quantitative Data in Biological Model Parameterization and Uncertainty Quantification.","authors":"Ely F Miller, Abhishek Mallela, Jacob Neumann, Yen Ting Lin, William S Hlavacek, Richard G Posner","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Data generated in studies of cellular regulatory systems are often qualitative. For example, measurements of signaling readouts in the presence and absence of mutations may reveal a rank ordering of responses across conditions but not the precise extents of mutation-induced differences. Qualitative data are often ignored by mathematical modelers or are considered in an <i>ad hoc</i> manner, as in the study of Kocieniewski and Lipniacki (2013) [<i>Phys Biol</i> <b>10</b>: 035006], which was focused on the roles of MEK isoforms in ERK activation. In this earlier study, model parameter values were tuned manually to obtain consistency with a combination of qualitative and quantitative data. This approach is not reproducible, nor does it provide insights into parametric or prediction uncertainties. Here, starting from the same data and the same ordinary differential equation (ODE) model structure, we generate formalized statements of qualitative observations, making these observations more reusable, and we improve the model parameterization procedure by applying a systematic and automated approach enabled by the software package PyBioNetFit. We also demonstrate uncertainty quantification (UQ), which was absent in the original study. Our results show that PyBioNetFit enables qualitative data to be leveraged, together with quantitative data, in parameterization of systems biology models and facilitates UQ. These capabilities are important for reliable estimation of model parameters and model analyses in studies of cellular regulatory systems and reproducibility.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data generated in studies of cellular regulatory systems are often qualitative. For example, measurements of signaling readouts in the presence and absence of mutations may reveal a rank ordering of responses across conditions but not the precise extents of mutation-induced differences. Qualitative data are often ignored by mathematical modelers or are considered in an ad hoc manner, as in the study of Kocieniewski and Lipniacki (2013) [Phys Biol 10: 035006], which was focused on the roles of MEK isoforms in ERK activation. In this earlier study, model parameter values were tuned manually to obtain consistency with a combination of qualitative and quantitative data. This approach is not reproducible, nor does it provide insights into parametric or prediction uncertainties. Here, starting from the same data and the same ordinary differential equation (ODE) model structure, we generate formalized statements of qualitative observations, making these observations more reusable, and we improve the model parameterization procedure by applying a systematic and automated approach enabled by the software package PyBioNetFit. We also demonstrate uncertainty quantification (UQ), which was absent in the original study. Our results show that PyBioNetFit enables qualitative data to be leveraged, together with quantitative data, in parameterization of systems biology models and facilitates UQ. These capabilities are important for reliable estimation of model parameters and model analyses in studies of cellular regulatory systems and reproducibility.

利用PyBioNetFit在生物模型参数化和不确定性量化中利用定性和定量数据。
在细胞调节系统的研究中产生的数据通常是定性的。例如,在存在和不存在突变的情况下,信号读数的测量可能会揭示不同条件下反应的等级顺序,但不能揭示突变诱导差异的精确程度。定性数据经常被数学建模者忽略,或者以一种特殊的方式来考虑,如Kocieniewski和Lipniacki(2013)的研究[Phys Biol 10: 035006],该研究的重点是MEK异构体在ERK激活中的作用。在这个早期的研究中,模型参数值是手动调整的,以获得定性和定量数据相结合的一致性。这种方法是不可重复的,也不提供对参数或预测不确定性的见解。在这里,我们从相同的数据和相同的常微分方程(ODE)模型结构出发,生成定性观察的形式化陈述,使这些观察更易于重用,并通过应用软件包PyBioNetFit支持的系统化和自动化方法改进模型参数化过程。我们还展示了不确定性量化(UQ),这在原始研究中是不存在的。我们的研究结果表明,PyBioNetFit使定性数据与定量数据一起在系统生物学模型的参数化中得到利用,并促进了UQ。这些能力对于细胞调节系统和可重复性研究中模型参数的可靠估计和模型分析非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信