Optimal position fuzzy control for coordinated movement of the ring and little fingers in an impaired human hand.

IF 1.6 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Maryam Iqbal, Sabtain Rasool
{"title":"Optimal position fuzzy control for coordinated movement of the ring and little fingers in an impaired human hand.","authors":"Maryam Iqbal, Sabtain Rasool","doi":"10.1007/s00422-025-01023-3","DOIUrl":null,"url":null,"abstract":"<p><p>The dexterity of the human hand is largely due to its multiple degrees of freedom. However, coordinating the movements of the ring and little fingers independently can be challenging because of the biomechanical and neurological interdependencies between them. This research presents a cascade control system based on fuzzy logic to manage the dynamic movements of these fingers within a simulated biomechanical model of a human hand. A mathematical model that incorporates transfer functions and state-space representations has been developed for the fingers. The fuzzy logic controller is designed to address the nonlinearity of the biomechanical model, optimizing both the transient and steady-state response parameters. The simulation results indicate that the system achieves a rise time of 0.6 s and a peak time of 0.3 s for the ring finger, with an overshoot of 5%. The little finger, on the other hand, exhibits an overshoot of less than 0.6% and a settling time ranging from 1 to 2.6 s across various joints. Overall, the proposed control system successfully coordinates finger movements, achieving a stable response within 3.5 s and minimal disturbances. These findings represent significant advancements in precision and robustness for prosthetic and robotic hand systems, providing a promising foundation for assistive technologies aimed at fine motor control rehabilitation.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":"119 4-6","pages":"24"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-025-01023-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dexterity of the human hand is largely due to its multiple degrees of freedom. However, coordinating the movements of the ring and little fingers independently can be challenging because of the biomechanical and neurological interdependencies between them. This research presents a cascade control system based on fuzzy logic to manage the dynamic movements of these fingers within a simulated biomechanical model of a human hand. A mathematical model that incorporates transfer functions and state-space representations has been developed for the fingers. The fuzzy logic controller is designed to address the nonlinearity of the biomechanical model, optimizing both the transient and steady-state response parameters. The simulation results indicate that the system achieves a rise time of 0.6 s and a peak time of 0.3 s for the ring finger, with an overshoot of 5%. The little finger, on the other hand, exhibits an overshoot of less than 0.6% and a settling time ranging from 1 to 2.6 s across various joints. Overall, the proposed control system successfully coordinates finger movements, achieving a stable response within 3.5 s and minimal disturbances. These findings represent significant advancements in precision and robustness for prosthetic and robotic hand systems, providing a promising foundation for assistive technologies aimed at fine motor control rehabilitation.

伤残人手无名指和小指协调运动的最佳位置模糊控制。
人的手的灵巧很大程度上是由于它的多重自由度。然而,独立协调无名指和小指的运动可能具有挑战性,因为它们之间的生物力学和神经学相互依赖。本研究提出了一种基于模糊逻辑的级联控制系统,以模拟人手的生物力学模型来管理这些手指的动态运动。一个结合传递函数和状态空间表示的数学模型已经为手指开发出来。模糊控制器的设计是为了解决生物力学模型的非线性,优化瞬态和稳态响应参数。仿真结果表明,该系统的无名指上升时间为0.6 s,峰值时间为0.3 s,超调量为5%。另一方面,小指在不同的关节上表现出小于0.6%的超调,沉降时间从1到2.6 s不等。总体而言,所提出的控制系统成功地协调了手指运动,在3.5 s内实现了稳定的响应和最小的干扰。这些发现代表了假肢和机械手系统在精度和稳健性方面的重大进步,为精细运动控制康复辅助技术提供了有希望的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信