Yubo Zou, Nicolas Allen, Emaan Rauf, Deborah Leckband
{"title":"Epidermal growth factor receptor is an essential component in E-cadherin force-transduction complexes.","authors":"Yubo Zou, Nicolas Allen, Emaan Rauf, Deborah Leckband","doi":"10.1242/jcs.264350","DOIUrl":null,"url":null,"abstract":"<p><p>We present evidence that the association of Epithelial (E)-cadherin (CHD1) extracellular domain and epidermal growth factor receptor (EGFR, ErbB1) is obligatory for cadherin force transduction signaling. E-cadherin and EGFR associate at cell surfaces, independent of their cytoplasmic domains, and tension on E-cadherin activates EGFR signaling. Using engineered cadherin mutants that disrupt co-immunoprecipitation with EGFR, but not adhesion, we show that the hetero-receptor complex is required to mechanically activate signaling and downstream cytoskeletal remodeling at cadherin adhesions. The mutants localized the essential region on E-cadherin to the extracellular region and domain 4, EC4. The ectodomain is also required for hetero-receptor co-localization at intercellular junctions. Although the E-cadherin mutants disrupt EGFR signaling, integrin pre-activation together with tension rescues cytoskeletal reinforcement at cadherin adhesions, confirming the role of integrins in intercellular force transduction. Furthermore, although E-cadherin suppresses EGFR-mediated proliferation, in response to extracellular matrix stiffening, the force-sensitive hetero-receptor complex regulates growth factor-dependent epithelial proliferation. These findings support the hypothesis that E-cadherin complexes with EGFR are mechano-switches at cell-cell contacts that directly couple intercellular force fluctuations to mitogen-dependent signaling.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.264350","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present evidence that the association of Epithelial (E)-cadherin (CHD1) extracellular domain and epidermal growth factor receptor (EGFR, ErbB1) is obligatory for cadherin force transduction signaling. E-cadherin and EGFR associate at cell surfaces, independent of their cytoplasmic domains, and tension on E-cadherin activates EGFR signaling. Using engineered cadherin mutants that disrupt co-immunoprecipitation with EGFR, but not adhesion, we show that the hetero-receptor complex is required to mechanically activate signaling and downstream cytoskeletal remodeling at cadherin adhesions. The mutants localized the essential region on E-cadherin to the extracellular region and domain 4, EC4. The ectodomain is also required for hetero-receptor co-localization at intercellular junctions. Although the E-cadherin mutants disrupt EGFR signaling, integrin pre-activation together with tension rescues cytoskeletal reinforcement at cadherin adhesions, confirming the role of integrins in intercellular force transduction. Furthermore, although E-cadherin suppresses EGFR-mediated proliferation, in response to extracellular matrix stiffening, the force-sensitive hetero-receptor complex regulates growth factor-dependent epithelial proliferation. These findings support the hypothesis that E-cadherin complexes with EGFR are mechano-switches at cell-cell contacts that directly couple intercellular force fluctuations to mitogen-dependent signaling.