Alteration of cardiac energetics and mitochondrial function in doxorubicin‑induced cardiotoxicity: Molecular mechanism and prospective implications (Review).
{"title":"Alteration of cardiac energetics and mitochondrial function in doxorubicin‑induced cardiotoxicity: Molecular mechanism and prospective implications (Review).","authors":"Gong Qing, Chao Huang, Jixiang Pei, Bo Peng","doi":"10.3892/ijmm.2025.5624","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX)‑induced cardiotoxicity (DIC) remains a critical challenge in cancer therapy, significantly limiting its use in clinical practice. The underlying mechanisms involve disruptions in cardiac metabolism and mitochondrial dysfunction. The heart relies on mitochondrial oxidative phosphorylation to produce ATP, which is essential for maintaining both contraction and relaxation. DOX disrupts glucose metabolism and fatty acid oxidation, resulting in energy shortages and excessive production of reactive oxygen species (ROS). These ROS contribute to mitochondrial damage, organelle malfunction and eventually cardiomyocyte death. This review describes the pathophysiological aspects of DIC, emphasising the molecular mechanisms underlying mitochondrial dysfunction and metabolic dysregulation in the heart during DIC progression. Additionally, the potential diagnostics, therapeutic interventions and drugs targeting metabolic pathways are summarised, focusing on metabolic modulation, combining non‑pharmacological therapies, such as exercise, fasting and mitochondrial transplantation, and approaches to enhance mitochondrial quality control, offering promising theoretical insights and practical strategies for DIC prevention and management.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 5","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5624","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Doxorubicin (DOX)‑induced cardiotoxicity (DIC) remains a critical challenge in cancer therapy, significantly limiting its use in clinical practice. The underlying mechanisms involve disruptions in cardiac metabolism and mitochondrial dysfunction. The heart relies on mitochondrial oxidative phosphorylation to produce ATP, which is essential for maintaining both contraction and relaxation. DOX disrupts glucose metabolism and fatty acid oxidation, resulting in energy shortages and excessive production of reactive oxygen species (ROS). These ROS contribute to mitochondrial damage, organelle malfunction and eventually cardiomyocyte death. This review describes the pathophysiological aspects of DIC, emphasising the molecular mechanisms underlying mitochondrial dysfunction and metabolic dysregulation in the heart during DIC progression. Additionally, the potential diagnostics, therapeutic interventions and drugs targeting metabolic pathways are summarised, focusing on metabolic modulation, combining non‑pharmacological therapies, such as exercise, fasting and mitochondrial transplantation, and approaches to enhance mitochondrial quality control, offering promising theoretical insights and practical strategies for DIC prevention and management.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.