Youxue Lu, Ce Luo, Lanxiang Huang, Genyi Wu, Lihan Zhong, Jieyu Chu, Fubing Wang, Zexian Zeng, Deng Pan
{"title":"Functional genetic screens reveal key pathways instructing the molecular phenotypes of tumor-associated macrophages.","authors":"Youxue Lu, Ce Luo, Lanxiang Huang, Genyi Wu, Lihan Zhong, Jieyu Chu, Fubing Wang, Zexian Zeng, Deng Pan","doi":"10.1158/2326-6066.CIR-25-0488","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) display remarkable functional heterogeneity, yet the molecular mechanisms driving their diverse phenotypes remain elusive. Using CRISPR screens in primary macrophages, we identified tumor-derived factors, including lactic acid, PGE2, and GM-CSF, as key modulators of TAM polarization. These factors interact synergistically and antagonistically to shape distinct TAM phenotypes that are highly conserved across human cancers. Mechanistically, lactic acid and PGE2 jointly induce angiogenic gene programs while suppressing GM-CSF-driven MHC-II expression at the chromatin level, creating mutually exclusive distributions of proangiogenic and MHC-II+ TAMs, which are differentially localized to specific spatial niches in the tumor microenvironment. Furthermore, we showed that shifting TAMs to an interferon-responsive phenotype, triggered by Adar inactivation, significantly promotes the infiltration of effector CD8+ T cells through specific receptor-ligand interactions. These findings uncover a conserved mechanism of TAM polarization and offer insights into therapeutic strategies for TAM reprogramming to potentiate cancer immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-25-0488","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor-associated macrophages (TAMs) display remarkable functional heterogeneity, yet the molecular mechanisms driving their diverse phenotypes remain elusive. Using CRISPR screens in primary macrophages, we identified tumor-derived factors, including lactic acid, PGE2, and GM-CSF, as key modulators of TAM polarization. These factors interact synergistically and antagonistically to shape distinct TAM phenotypes that are highly conserved across human cancers. Mechanistically, lactic acid and PGE2 jointly induce angiogenic gene programs while suppressing GM-CSF-driven MHC-II expression at the chromatin level, creating mutually exclusive distributions of proangiogenic and MHC-II+ TAMs, which are differentially localized to specific spatial niches in the tumor microenvironment. Furthermore, we showed that shifting TAMs to an interferon-responsive phenotype, triggered by Adar inactivation, significantly promotes the infiltration of effector CD8+ T cells through specific receptor-ligand interactions. These findings uncover a conserved mechanism of TAM polarization and offer insights into therapeutic strategies for TAM reprogramming to potentiate cancer immunotherapy.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.