Cluster synchronization via graph Laplacian eigenvectors.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0280142
Tobias Timofeyev, Alice Patania
{"title":"Cluster synchronization via graph Laplacian eigenvectors.","authors":"Tobias Timofeyev, Alice Patania","doi":"10.1063/5.0280142","DOIUrl":null,"url":null,"abstract":"<p><p>Almost equitable partitions (AEPs) have been linked to cluster synchronization in oscillatory systems, highlighting the importance of structure in collective network dynamics. We provide a general spectral framework that formalizes this connection, showing how eigenvectors associated with AEPs span a subspace of the Laplacian spectrum that governs partition-induced synchronization behavior. This offers a principled reduction of network dynamics, allowing clustered states to be understood in terms of quotient graph projections. Our approach clarifies the conditions under which transient hierarchical clustering and multi-frequency synchronization emerge and connects these dynamical phenomena directly to network symmetry and community structure. In doing so, we bridge a critical gap between static topology and dynamic behavior, namely, the lack of a spectral method for analyzing synchronization in networks that exhibit exact or approximate structural regularity. Perfect AEPs are rare in real-world networks since most have some degree of irregularity or noise. We define relaxation of an AEP we call a quasi-equitable partition at level δ (δ-QEP). δ-QEPs can preserve many of the clustering-relevant properties of AEPs while tolerating structural imperfections and noise. This extension enables us to describe synchronization behavior in more realistic scenarios, where ideal symmetries are rarely present. Our findings have important implications for understanding synchronization patterns in real-world networks, from neural circuits to power grids.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0280142","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Almost equitable partitions (AEPs) have been linked to cluster synchronization in oscillatory systems, highlighting the importance of structure in collective network dynamics. We provide a general spectral framework that formalizes this connection, showing how eigenvectors associated with AEPs span a subspace of the Laplacian spectrum that governs partition-induced synchronization behavior. This offers a principled reduction of network dynamics, allowing clustered states to be understood in terms of quotient graph projections. Our approach clarifies the conditions under which transient hierarchical clustering and multi-frequency synchronization emerge and connects these dynamical phenomena directly to network symmetry and community structure. In doing so, we bridge a critical gap between static topology and dynamic behavior, namely, the lack of a spectral method for analyzing synchronization in networks that exhibit exact or approximate structural regularity. Perfect AEPs are rare in real-world networks since most have some degree of irregularity or noise. We define relaxation of an AEP we call a quasi-equitable partition at level δ (δ-QEP). δ-QEPs can preserve many of the clustering-relevant properties of AEPs while tolerating structural imperfections and noise. This extension enables us to describe synchronization behavior in more realistic scenarios, where ideal symmetries are rarely present. Our findings have important implications for understanding synchronization patterns in real-world networks, from neural circuits to power grids.

基于图拉普拉斯特征向量的聚类同步。
几乎公平分区(AEPs)与振荡系统中的集群同步有关,突出了结构在集体网络动力学中的重要性。我们提供了一个形式化这种联系的一般谱框架,展示了与aep相关的特征向量如何跨越控制分区诱导同步行为的拉普拉斯谱的子空间。这提供了一种原则性的网络动态减少,允许根据商图投影来理解聚类状态。我们的方法阐明了瞬态分层聚类和多频同步产生的条件,并将这些动态现象直接与网络对称性和群落结构联系起来。在这样做时,我们弥合了静态拓扑和动态行为之间的关键差距,即缺乏光谱方法来分析表现出精确或近似结构规律性的网络中的同步。完美的aep在现实网络中很少见,因为大多数aep都有一定程度的不规则性或噪声。我们定义了AEP的弛豫,我们称之为δ能级的准均衡分拆(δ- qep)。δ-QEPs可以保留AEPs的许多聚类相关特性,同时容忍结构缺陷和噪声。这个扩展使我们能够在更现实的场景中描述同步行为,理想的对称性很少存在。我们的发现对于理解从神经回路到电网等现实世界网络的同步模式具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信