Identification of a novel transcriptome signature for predicting the response to anti-TNF-α treatment in patients with rheumatoid arthritis.

IF 20.6 1区 医学 Q1 RHEUMATOLOGY
Lucia Santiago-Lamelas, Patricia Castro-Santos, Enrique J deAndrés-Galiana, Juan Luis Fernández-Martínez, Alejandro Escudero-Contreras, Carlos Pérez-Sanchez, Ismael Sánchez-Pareja, Chary López-Pedrera, Scott A Jelinsky, Maryia Nikitsina, Isidoro Gonzalez-Alvaro, Raquel Dos Santos Sobrín, Antonio Mera, Josefina Durán, Roberto Díaz-Peña
{"title":"Identification of a novel transcriptome signature for predicting the response to anti-TNF-α treatment in patients with rheumatoid arthritis.","authors":"Lucia Santiago-Lamelas, Patricia Castro-Santos, Enrique J deAndrés-Galiana, Juan Luis Fernández-Martínez, Alejandro Escudero-Contreras, Carlos Pérez-Sanchez, Ismael Sánchez-Pareja, Chary López-Pedrera, Scott A Jelinsky, Maryia Nikitsina, Isidoro Gonzalez-Alvaro, Raquel Dos Santos Sobrín, Antonio Mera, Josefina Durán, Roberto Díaz-Peña","doi":"10.1016/j.ard.2025.08.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to identify and validate a transcriptomic signature capable of predicting the response to tumour necrosis factor inhibitors (TNFi) therapy in patients with rheumatoid arthritis (RA) before treatment initiation.</p><p><strong>Methods: </strong>We performed a retrospective transcriptomic analysis using 2 public datasets, RNA-seq data from peripheral blood mononuclear cells (GSE138746) and microarray data from whole blood (GSE33377), to define a small-scale gene signature predictive of the response to TNFi treatment. Three external validations were then conducted, resulting in a total of 279 individuals, 169 responders, and 110 nonresponders.</p><p><strong>Results: </strong>Initial RNA-seq analysis (GSE138746) revealed 53 genes differentially expressed between responders and nonresponders; however, none of these genes remained significant after P value adjustment with the Benjamini-Hochberg method. A small-scale genetic signature comprising the 18 most discriminatory genes was then developed, achieving a leave-one-out cross-validation predictive accuracy of 88.75%. We further refined this list to 7 genes (COMTD1, MRPL24, DNTTIP1, GLS2, GTPBP2, IL18R1, and KCNK17) that effectively predicted the response to TNFi treatment, with an area under the receiver operating characteristic curve (AUC) of 0.84 in the GSE33377 dataset. Internal validation of the GSE138746 dataset yielded an AUC = 0.89. Finally, external validation confirmed the robustness of the 7-gene model (AUC ≥ 0.85).</p><p><strong>Conclusions: </strong>We identified a transcriptomic signature that aids the prediction of the response to TNFi treatment in patients with RA. These findings support its potential use as a precision medicine tool to improve therapeutic decision-making and reduce exposure to ineffective treatments in patients with RA.</p>","PeriodicalId":8087,"journal":{"name":"Annals of the Rheumatic Diseases","volume":" ","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Rheumatic Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ard.2025.08.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study aims to identify and validate a transcriptomic signature capable of predicting the response to tumour necrosis factor inhibitors (TNFi) therapy in patients with rheumatoid arthritis (RA) before treatment initiation.

Methods: We performed a retrospective transcriptomic analysis using 2 public datasets, RNA-seq data from peripheral blood mononuclear cells (GSE138746) and microarray data from whole blood (GSE33377), to define a small-scale gene signature predictive of the response to TNFi treatment. Three external validations were then conducted, resulting in a total of 279 individuals, 169 responders, and 110 nonresponders.

Results: Initial RNA-seq analysis (GSE138746) revealed 53 genes differentially expressed between responders and nonresponders; however, none of these genes remained significant after P value adjustment with the Benjamini-Hochberg method. A small-scale genetic signature comprising the 18 most discriminatory genes was then developed, achieving a leave-one-out cross-validation predictive accuracy of 88.75%. We further refined this list to 7 genes (COMTD1, MRPL24, DNTTIP1, GLS2, GTPBP2, IL18R1, and KCNK17) that effectively predicted the response to TNFi treatment, with an area under the receiver operating characteristic curve (AUC) of 0.84 in the GSE33377 dataset. Internal validation of the GSE138746 dataset yielded an AUC = 0.89. Finally, external validation confirmed the robustness of the 7-gene model (AUC ≥ 0.85).

Conclusions: We identified a transcriptomic signature that aids the prediction of the response to TNFi treatment in patients with RA. These findings support its potential use as a precision medicine tool to improve therapeutic decision-making and reduce exposure to ineffective treatments in patients with RA.

鉴定一种新的转录组特征,用于预测类风湿关节炎患者对抗tnf -α治疗的反应。
目的:本研究旨在鉴定和验证能够在治疗开始前预测类风湿关节炎(RA)患者对肿瘤坏死因子抑制剂(TNFi)治疗反应的转录组特征。方法:我们使用2个公共数据集(来自外周血单个核细胞(GSE138746)的RNA-seq数据和来自全血(GSE33377)的微阵列数据)进行回顾性转录组学分析,以定义预测对TNFi治疗反应的小规模基因标记。然后进行了三次外部验证,总共产生279个个体,169个应答者和110个无应答者。结果:初始RNA-seq分析(GSE138746)显示53个基因在应答者和无应答者之间存在差异表达;然而,用Benjamini-Hochberg方法调整P值后,这些基因都没有保持显著性。然后开发了一个包含18个最具歧视性基因的小规模遗传签名,实现了留一交叉验证的预测准确率为88.75%。我们进一步将该列表细化到7个基因(COMTD1, MRPL24, DNTTIP1, GLS2, GTPBP2, IL18R1和KCNK17),这些基因有效地预测了对TNFi治疗的反应,在GSE33377数据集中,接受者工作特征曲线下面积(AUC)为0.84。GSE138746数据集的内部验证得出AUC = 0.89。最后,外部验证证实了7基因模型的稳健性(AUC≥0.85)。结论:我们确定了一个转录组特征,有助于预测RA患者对TNFi治疗的反应。这些发现支持其作为精准医疗工具的潜在用途,以改善RA患者的治疗决策并减少对无效治疗的暴露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of the Rheumatic Diseases
Annals of the Rheumatic Diseases 医学-风湿病学
CiteScore
35.00
自引率
9.90%
发文量
3728
审稿时长
1.4 months
期刊介绍: Annals of the Rheumatic Diseases (ARD) is an international peer-reviewed journal covering all aspects of rheumatology, which includes the full spectrum of musculoskeletal conditions, arthritic disease, and connective tissue disorders. ARD publishes basic, clinical, and translational scientific research, including the most important recommendations for the management of various conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信