Cascade Aggregation Network for Accurate Polyp Segmentation

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Yanru Jia, Yu Zeng, Huaping Guo
{"title":"Cascade Aggregation Network for Accurate Polyp Segmentation","authors":"Yanru Jia,&nbsp;Yu Zeng,&nbsp;Huaping Guo","doi":"10.1049/syb2.70036","DOIUrl":null,"url":null,"abstract":"<p>Accurate polyp segmentation is crucial for computer-aided diagnosis and early detection of colorectal cancer. Whereas feature pyramid network (FPN) and its variants are widely used in polyp segmentation, inherent limitations existing in FPN include: (1) repeated upsampling degrades fine details, reducing small polyp segmentation accuracy and (2) naive feature fusion (e.g., summation) inadequately captures global context, limiting performance on complex structures. To address limitations, we propose a cascaded aggregation network (CANet) that systematically integrates multi-level features for refined representation. CANet adopts PVT transformer as the backbone to extract robust multi-level representations and introduces a cascade aggregation module (CAM) that enriches semantic features without sacrificing spatial details. CAM adopts a top-down enhancement pathway, where high-level features progressively guide the fusion of multiscale information, enhancing semantic representation while preserving spatial details. CANet further integrates a multiscale context-aware module (MCAM) and a residual-based fusion module (RFM). MCAM applies parallel convolutions with diverse kernel sizes and dilation rates to low-level features, enabling fine-grained multiscale extraction of local details and enhancing scene understanding. RFM fuses these local features with high-level semantics from CAM, enabling effective cross-level integration. Experiments show that CANet outperforms SOTA methods in in- and out-of-distribution tests.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/syb2.70036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate polyp segmentation is crucial for computer-aided diagnosis and early detection of colorectal cancer. Whereas feature pyramid network (FPN) and its variants are widely used in polyp segmentation, inherent limitations existing in FPN include: (1) repeated upsampling degrades fine details, reducing small polyp segmentation accuracy and (2) naive feature fusion (e.g., summation) inadequately captures global context, limiting performance on complex structures. To address limitations, we propose a cascaded aggregation network (CANet) that systematically integrates multi-level features for refined representation. CANet adopts PVT transformer as the backbone to extract robust multi-level representations and introduces a cascade aggregation module (CAM) that enriches semantic features without sacrificing spatial details. CAM adopts a top-down enhancement pathway, where high-level features progressively guide the fusion of multiscale information, enhancing semantic representation while preserving spatial details. CANet further integrates a multiscale context-aware module (MCAM) and a residual-based fusion module (RFM). MCAM applies parallel convolutions with diverse kernel sizes and dilation rates to low-level features, enabling fine-grained multiscale extraction of local details and enhancing scene understanding. RFM fuses these local features with high-level semantics from CAM, enabling effective cross-level integration. Experiments show that CANet outperforms SOTA methods in in- and out-of-distribution tests.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

用于息肉精确分割的级联聚合网络
准确的息肉分割对于大肠癌的计算机辅助诊断和早期发现至关重要。尽管特征金字塔网络(FPN)及其变体广泛应用于息肉分割,但FPN存在固有的局限性:(1)重复上采样降低了精细细节,降低了小息肉分割的准确性;(2)幼稚的特征融合(例如求和)不能充分捕捉全局上下文,限制了复杂结构的性能。为了解决局限性,我们提出了一个级联聚合网络(CANet),该网络系统地集成了多级特征以进行精细表示。CANet采用PVT变压器作为主干提取鲁棒的多级表示,并引入级联聚合模块(CAM),在不牺牲空间细节的前提下丰富语义特征。CAM采用自顶向下的增强路径,由高层特征逐步引导多尺度信息融合,在保留空间细节的同时增强语义表示。CANet进一步集成了一个多尺度上下文感知模块(MCAM)和一个基于残差的融合模块(RFM)。MCAM将具有不同核大小和扩展率的并行卷积应用于低级特征,实现了细粒度的多尺度局部细节提取,增强了场景理解。RFM将这些本地特性与来自CAM的高级语义融合在一起,从而实现有效的跨层集成。实验表明,CANet在分布内和分布外测试中都优于SOTA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信