{"title":"Deep Learning-Based Spectrum Sensing for TV White Space in 5G-MBMS Networks","authors":"Fenghua Xu;Yukun Zhu;Hongyuan Zhu;Junsheng Mu;Jie Wang;Bingxin Wang;Jieliang Zheng","doi":"10.1109/TBC.2025.3553296","DOIUrl":null,"url":null,"abstract":"Accurate spectrum sensing in TV White Space (TVWS) is crucial for enhancing spectral efficiency in 5G Multimedia Broadcast Multicast Services (MBMS) networks. Traditional spectrum sensing techniques suffer from poor performance in low-SNR environments, necessitating a robust, data-driven approach. This study introduces a deep learning-based multi-feature fusion approach that integrates energy detection, cyclostationary analysis, and covariance matrix detection. The proposed model employs an adaptive thresholding mechanism and multi-task learning to enhance detection accuracy while ensuring real-time feasibility in dynamic spectrum environments. Our model implements multi-task learning for concurrent primary user detection and MBMS signal classification, featuring adaptive thresholds that adjust to signal conditions. Develops a novel multi-task learning-based spectrum sensing framework for concurrent primary user detection and MBMS signal classification. Introduces adaptive thresholding mechanisms to improve detection robustness under varying SNR conditions. Achieves 99% classification accuracy at −10 dB SNR, significantly outperforming traditional methods. Demonstrates practical feasibility for real-time spectrum sensing in 5G-MBMS networks.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 3","pages":"706-716"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10945890/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate spectrum sensing in TV White Space (TVWS) is crucial for enhancing spectral efficiency in 5G Multimedia Broadcast Multicast Services (MBMS) networks. Traditional spectrum sensing techniques suffer from poor performance in low-SNR environments, necessitating a robust, data-driven approach. This study introduces a deep learning-based multi-feature fusion approach that integrates energy detection, cyclostationary analysis, and covariance matrix detection. The proposed model employs an adaptive thresholding mechanism and multi-task learning to enhance detection accuracy while ensuring real-time feasibility in dynamic spectrum environments. Our model implements multi-task learning for concurrent primary user detection and MBMS signal classification, featuring adaptive thresholds that adjust to signal conditions. Develops a novel multi-task learning-based spectrum sensing framework for concurrent primary user detection and MBMS signal classification. Introduces adaptive thresholding mechanisms to improve detection robustness under varying SNR conditions. Achieves 99% classification accuracy at −10 dB SNR, significantly outperforming traditional methods. Demonstrates practical feasibility for real-time spectrum sensing in 5G-MBMS networks.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”