Dual Collaborative Sparse and Total Variation Regularization for Unmixing-Based Change Detection

IF 4.4
Shile Zhang;Yuxing Zhao;Zhihan Liu;Xiangming Jiang;Maoguo Gong
{"title":"Dual Collaborative Sparse and Total Variation Regularization for Unmixing-Based Change Detection","authors":"Shile Zhang;Yuxing Zhao;Zhihan Liu;Xiangming Jiang;Maoguo Gong","doi":"10.1109/LGRS.2025.3603339","DOIUrl":null,"url":null,"abstract":"Hyperspectral change detection is critical for analyzing the temporal evolution of the feature components in multitemporal hyperspectral images. However, existing methods often fall short of fully exploiting the spatiotemporal–spectral correlations within these images, thereby limiting their accuracy and robustness. This letter introduces a novel hyperspectral change detection method, termed dual collaborative sparse unmixing via variable splitting augmented Lagrangian and total variation (DCLSUnSAL-TV). By integrating dual collaborative sparsity and total variation (TV) regularizers, this method capitalizes on the local similarity of changes in the feature components, leveraging the low-rank property of hyperspectral difference images (HSDIs) and their inherent spatial–spectral correlations. A customized abundancewise truncation and ensemble strategy is designed to obtain the change map by aggregating the subpixel-level changes with respect to each endmember. Comprehensive comparison and ablation experiments demonstrate the effectiveness of the proposed method in improving the accuracy of change detection. The source code is available at: <uri>https://github.com/2alsbz/DCLSUnSAL_TV</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11142863/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral change detection is critical for analyzing the temporal evolution of the feature components in multitemporal hyperspectral images. However, existing methods often fall short of fully exploiting the spatiotemporal–spectral correlations within these images, thereby limiting their accuracy and robustness. This letter introduces a novel hyperspectral change detection method, termed dual collaborative sparse unmixing via variable splitting augmented Lagrangian and total variation (DCLSUnSAL-TV). By integrating dual collaborative sparsity and total variation (TV) regularizers, this method capitalizes on the local similarity of changes in the feature components, leveraging the low-rank property of hyperspectral difference images (HSDIs) and their inherent spatial–spectral correlations. A customized abundancewise truncation and ensemble strategy is designed to obtain the change map by aggregating the subpixel-level changes with respect to each endmember. Comprehensive comparison and ablation experiments demonstrate the effectiveness of the proposed method in improving the accuracy of change detection. The source code is available at: https://github.com/2alsbz/DCLSUnSAL_TV
基于非混合变化检测的双协同稀疏和全变分正则化
高光谱变化检测对于分析多时相高光谱图像中特征分量的时间演化至关重要。然而,现有的方法往往不能充分利用这些图像中的时空光谱相关性,从而限制了它们的准确性和鲁棒性。本文介绍了一种新的高光谱变化检测方法,即通过变量分裂增广拉格朗日和全变分(DCLSUnSAL-TV)进行双协同稀疏解混。该方法通过整合双协同稀疏性和总变分(TV)正则化器,利用特征分量变化的局部相似性,利用高光谱差分图像(hsdi)的低秩特性及其固有的空间-光谱相关性。设计了一种定制的丰度截断和集成策略,通过聚合相对于每个端元的亚像素级变化来获得变化图。综合对比和烧蚀实验证明了该方法在提高变化检测精度方面的有效性。源代码可从https://github.com/2alsbz/DCLSUnSAL_TV获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信