Traction-regulated persistence governs durotaxis across cell types

IF 4.3 3区 生物学 Q2 CELL BIOLOGY
Hongyuan Zhu , Xiaoxi Liu , Jin Wang , Yunyi Miao , Yan Liu , Hui Guo , Jin Yang , Zheng Wang , Tian Jian Lu , Feng Xu , Min Lin
{"title":"Traction-regulated persistence governs durotaxis across cell types","authors":"Hongyuan Zhu ,&nbsp;Xiaoxi Liu ,&nbsp;Jin Wang ,&nbsp;Yunyi Miao ,&nbsp;Yan Liu ,&nbsp;Hui Guo ,&nbsp;Jin Yang ,&nbsp;Zheng Wang ,&nbsp;Tian Jian Lu ,&nbsp;Feng Xu ,&nbsp;Min Lin","doi":"10.1016/j.ejcb.2025.151515","DOIUrl":null,"url":null,"abstract":"<div><div>Cell migration toward stiffer or softer environments (durotaxis) underlies processes from development to cancer metastasis, yet the underlying mechanism and its universality remain unclear. To resolve this, we investigated how traction forces and directional persistence dictate cell migration along stiffness gradients. We utilized tunable PEG hydrogels with stiffness gradients of 1–16 kPa and perturbed contractility (blebbistatin, oligomycin), and adhesion (vinculin mutants), in cancer cells exhibiting opposing durotactic biases. We found that cells exerting high traction forces migrate persistently towards stiffer regions (positive durotaxis), whereas those with reduced traction lose persistence and shift towards softer regions (negative durotaxis). We developed a computational model linking stiffness-dependent traction from a motor-clutch framework to F-actin stability-driven persistence, capturing both behaviors with one parameter set. The model predicts, and experiments confirm, that tuning myosin activity or adhesion reinforcement can switch durotaxis states. These findings establish a unified mechanism where traction-regulated persistence governs durotaxis bias across cell types. This insight advances design of biomaterials for directed cell migration and suggests therapeutic strategies to control cell trafficking in tissue repair and cancer.</div></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":"104 4","pages":"Article 151515"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of cell biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171933525000408","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell migration toward stiffer or softer environments (durotaxis) underlies processes from development to cancer metastasis, yet the underlying mechanism and its universality remain unclear. To resolve this, we investigated how traction forces and directional persistence dictate cell migration along stiffness gradients. We utilized tunable PEG hydrogels with stiffness gradients of 1–16 kPa and perturbed contractility (blebbistatin, oligomycin), and adhesion (vinculin mutants), in cancer cells exhibiting opposing durotactic biases. We found that cells exerting high traction forces migrate persistently towards stiffer regions (positive durotaxis), whereas those with reduced traction lose persistence and shift towards softer regions (negative durotaxis). We developed a computational model linking stiffness-dependent traction from a motor-clutch framework to F-actin stability-driven persistence, capturing both behaviors with one parameter set. The model predicts, and experiments confirm, that tuning myosin activity or adhesion reinforcement can switch durotaxis states. These findings establish a unified mechanism where traction-regulated persistence governs durotaxis bias across cell types. This insight advances design of biomaterials for directed cell migration and suggests therapeutic strategies to control cell trafficking in tissue repair and cancer.
牵引力调控的持久性控制着细胞类型之间的趋同性
细胞向更硬或更软环境的迁移(趋向性)是癌症发展到转移过程的基础,但潜在的机制及其普遍性尚不清楚。为了解决这个问题,我们研究了牵引力和定向持久性如何决定细胞沿刚度梯度迁移。我们使用可调的PEG水凝胶,其硬度梯度为1-16 kPa,并在表现出相反的多致性偏差的癌细胞中扰动收缩性(blebbistatin, oligomycin)和粘附性(vinculin突变体)。我们发现,施加高牵引力的细胞持续向较硬的区域迁移(正硬性),而牵引力降低的细胞则失去持久性并向较软的区域迁移(负硬性)。我们开发了一个计算模型,将电机离合器框架中依赖刚度的牵引力与f -肌动蛋白稳定性驱动的持久性联系起来,用一个参数集捕获这两种行为。该模型预测,实验证实,调整肌球蛋白活性或粘合增强可以改变硬度状态。这些发现建立了一种统一的机制,其中牵引力调节的持久性控制着不同细胞类型的趋向性。这一发现推进了定向细胞迁移生物材料的设计,并提出了控制组织修复和癌症中细胞运输的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European journal of cell biology
European journal of cell biology 生物-细胞生物学
CiteScore
7.30
自引率
1.50%
发文量
80
审稿时长
38 days
期刊介绍: The European Journal of Cell Biology, a journal of experimental cell investigation, publishes reviews, original articles and short communications on the structure, function and macromolecular organization of cells and cell components. Contributions focusing on cellular dynamics, motility and differentiation, particularly if related to cellular biochemistry, molecular biology, immunology, neurobiology, and developmental biology are encouraged. Manuscripts describing significant technical advances are also welcome. In addition, papers dealing with biomedical issues of general interest to cell biologists will be published. Contributions addressing cell biological problems in prokaryotes and plants are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信