Discontinuous extreme learning machine for interface and free boundary problems

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Anci Lin , Zhiwen Zhang , Weidong Zhao , Wenju Zhao
{"title":"Discontinuous extreme learning machine for interface and free boundary problems","authors":"Anci Lin ,&nbsp;Zhiwen Zhang ,&nbsp;Weidong Zhao ,&nbsp;Wenju Zhao","doi":"10.1016/j.jcp.2025.114329","DOIUrl":null,"url":null,"abstract":"<div><div>We present a machine-learning framework for interface and free-boundary problems, focusing on physics-informed neural networks (PINNs). Two major challenges are addressed: (i) interface-induced discontinuities and (ii) moving boundaries inherent to free-boundary problems. To meet these challenges, we introduce the discontinuous extreme learning machine (DELM), a mesh-free method that leverages an “artificial discontinuity” mechanism, and the local extreme learning machine (locELM) architecture. Our first innovation augments the input of a single-layer neural network with two additional variables: a piecewise-constant indicator that enforces discontinuities in the solution itself, and the absolute value of a signed-distance level-set function that produces the correct gradient jump across the interface. This design captures discontinuities without splitting the network into multiple pieces or inflating the parameter count. For problems with evolving interfaces (e.g., the Stefan problem), we devise a decoupled discrete-DELM strategy that integrates seamlessly with the classical front-tracking and time-discretization technique. At each time step, the front-tracking module updates the interface geometry, and DELM subsequently solves the governing PDE in the updated domain. To further reduce complexity while maintaining accuracy, the computational domain is partitioned, and an independent single-layer ELM is trained within each subdomain. Various numerical experiments validate the proposed framework, demonstrating high accuracy and fast computational speed across a wide range of benchmark problems.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"541 ","pages":"Article 114329"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006114","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a machine-learning framework for interface and free-boundary problems, focusing on physics-informed neural networks (PINNs). Two major challenges are addressed: (i) interface-induced discontinuities and (ii) moving boundaries inherent to free-boundary problems. To meet these challenges, we introduce the discontinuous extreme learning machine (DELM), a mesh-free method that leverages an “artificial discontinuity” mechanism, and the local extreme learning machine (locELM) architecture. Our first innovation augments the input of a single-layer neural network with two additional variables: a piecewise-constant indicator that enforces discontinuities in the solution itself, and the absolute value of a signed-distance level-set function that produces the correct gradient jump across the interface. This design captures discontinuities without splitting the network into multiple pieces or inflating the parameter count. For problems with evolving interfaces (e.g., the Stefan problem), we devise a decoupled discrete-DELM strategy that integrates seamlessly with the classical front-tracking and time-discretization technique. At each time step, the front-tracking module updates the interface geometry, and DELM subsequently solves the governing PDE in the updated domain. To further reduce complexity while maintaining accuracy, the computational domain is partitioned, and an independent single-layer ELM is trained within each subdomain. Various numerical experiments validate the proposed framework, demonstrating high accuracy and fast computational speed across a wide range of benchmark problems.
界面和自由边界问题的不连续极限学习机
我们提出了一个用于界面和自由边界问题的机器学习框架,重点关注物理信息神经网络(pinn)。解决了两个主要挑战:(i)界面引起的不连续和(ii)自由边界问题固有的移动边界。为了应对这些挑战,我们引入了不连续极限学习机(DELM),这是一种利用“人工不连续”机制的无网格方法,以及局部极限学习机(locELM)架构。我们的第一个创新是用两个额外的变量来增加单层神经网络的输入:一个分段常数指示器,它强制解决方案本身的不连续,以及一个带符号距离的水平集函数的绝对值,它产生正确的梯度跳跃。这种设计捕捉不连续性,而不会将网络分成多个部分或增加参数计数。对于具有进化接口的问题(例如,Stefan问题),我们设计了一种解耦离散delm策略,该策略与经典的前跟踪和时间离散化技术无缝集成。在每个时间步,前端跟踪模块更新接口几何形状,DELM随后在更新后的域中求解控制PDE。为了在保持精度的同时进一步降低复杂性,对计算域进行了划分,并在每个子域中训练一个独立的单层ELM。各种数值实验验证了所提出的框架,在广泛的基准问题上证明了高精度和快速的计算速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信