Frobenius structure and p-adic zeta values

IF 1.5 1区 数学 Q1 MATHEMATICS
Frits Beukers , Masha Vlasenko
{"title":"Frobenius structure and p-adic zeta values","authors":"Frits Beukers ,&nbsp;Masha Vlasenko","doi":"10.1016/j.aim.2025.110512","DOIUrl":null,"url":null,"abstract":"<div><div>For differential operators of Calabi-Yau type, Candelas, De la Ossa and van Straten conjecture the appearance of <em>p</em>-adic zeta values in the matrix entries of their <em>p</em>-adic Frobenius structure expressed in the standard basis of solutions near a point of maximal unipotent local monodromy. We prove that this phenomenon holds for simplicial and hyperoctahedral families of Calabi-Yau hypersurfaces in <em>n</em> dimensions, in which case the limits of the Frobenius matrix entries are rational linear combinations of products of <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> with <span><math><mn>1</mn><mo>&lt;</mo><mi>k</mi><mo>&lt;</mo><mi>n</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110512"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004104","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For differential operators of Calabi-Yau type, Candelas, De la Ossa and van Straten conjecture the appearance of p-adic zeta values in the matrix entries of their p-adic Frobenius structure expressed in the standard basis of solutions near a point of maximal unipotent local monodromy. We prove that this phenomenon holds for simplicial and hyperoctahedral families of Calabi-Yau hypersurfaces in n dimensions, in which case the limits of the Frobenius matrix entries are rational linear combinations of products of ζp(k) with 1<k<n.
Frobenius结构和p进zeta值
对于Calabi-Yau型的微分算子,Candelas、De la Ossa和van Straten猜想在其p-adic Frobenius结构的矩阵项中p-adic zeta值的出现,该矩阵项用解的标准基表示在最大单幂局部单点附近。我们证明了这一现象适用于n维的Calabi-Yau超曲面的简单族和高八面体族,在这种情况下,Frobenius矩阵项的极限是ζp(k)与1<;k<;n乘积的有理线性组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信