A semi-automatic approach to study population dynamics based on population pyramids

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-09-02 DOI:10.1016/j.mex.2025.103591
Max Hahn-Klimroth , João Pedro Meireles , Laurie Bingaman Lackey , Nick van Eeuwijk , Mads F. Bertelsen , Paul W. Dierkes , Marcus Clauss
{"title":"A semi-automatic approach to study population dynamics based on population pyramids","authors":"Max Hahn-Klimroth ,&nbsp;João Pedro Meireles ,&nbsp;Laurie Bingaman Lackey ,&nbsp;Nick van Eeuwijk ,&nbsp;Mads F. Bertelsen ,&nbsp;Paul W. Dierkes ,&nbsp;Marcus Clauss","doi":"10.1016/j.mex.2025.103591","DOIUrl":null,"url":null,"abstract":"<div><div>The depiction of populations – of humans or animals – as ‘population pyramids’ is a useful tool for the assessment of various characteristics of populations at a glance. Although these visualisations are well-known objects in various communities, formalised and algorithmic approaches to gain information from these data are less present. Here, we present an algorithm-based classification of population data into ‘pyramids’ of different shapes that can be linked to typical demographic properties. The classification accuracy of the algorithm was tested on over 50,000 population pyramids from 450 mammal species. The approach delivers plausible classifications, in particular with respect to changes in population size linked to specific series of, and transitions between, different ‘pyramid’ shapes. We believe this approach might become a useful tool for analysing and communicating historical population developments in multiple contexts and is of broad interest. Moreover, it might be useful for animal population management strategies.<ul><li><span>•</span><span><div>Introducing a deterministic algorithmic approach to classify population pyramid data.</div></span></li><li><span>•</span><span><div>Data discretization step to reduce data complexity and to unify data.</div></span></li><li><span>•</span><span><div>Classification of a population pyramid into non-species-specific shape categories that are linked to specific characteristics of the population.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103591"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125004352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The depiction of populations – of humans or animals – as ‘population pyramids’ is a useful tool for the assessment of various characteristics of populations at a glance. Although these visualisations are well-known objects in various communities, formalised and algorithmic approaches to gain information from these data are less present. Here, we present an algorithm-based classification of population data into ‘pyramids’ of different shapes that can be linked to typical demographic properties. The classification accuracy of the algorithm was tested on over 50,000 population pyramids from 450 mammal species. The approach delivers plausible classifications, in particular with respect to changes in population size linked to specific series of, and transitions between, different ‘pyramid’ shapes. We believe this approach might become a useful tool for analysing and communicating historical population developments in multiple contexts and is of broad interest. Moreover, it might be useful for animal population management strategies.
  • Introducing a deterministic algorithmic approach to classify population pyramid data.
  • Data discretization step to reduce data complexity and to unify data.
  • Classification of a population pyramid into non-species-specific shape categories that are linked to specific characteristics of the population.

Abstract Image

基于人口金字塔的人口动态研究半自动方法
将人类或动物的种群描述为“种群金字塔”是一种有用的工具,可以一目了然地评估种群的各种特征。尽管这些可视化在各个社区都是众所周知的对象,但从这些数据中获取信息的形式化和算法方法却很少出现。在这里,我们提出了一种基于算法的人口数据分类,将其分为不同形状的“金字塔”,这些“金字塔”可以与典型的人口统计属性相关联。该算法的分类准确性在450种哺乳动物的5万多个种群金字塔上进行了测试。该方法提供了合理的分类,特别是关于与特定系列相关的人口规模变化,以及不同“金字塔”形状之间的过渡。我们认为,这种方法可能成为在多种情况下分析和交流历史人口发展的有用工具,具有广泛的意义。此外,它可能对动物种群管理策略有用。•引入确定性算法方法对人口金字塔数据进行分类。•数据离散化步骤,降低数据复杂性,统一数据。•将种群金字塔分类为与种群的特定特征相关联的非物种特定形状类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信