BOBA: Byzantine-Robust Federated Learning with Label Skewness.

Wenxuan Bao, Jun Wu, Jingrui He
{"title":"BOBA: Byzantine-Robust Federated Learning with Label Skewness.","authors":"Wenxuan Bao, Jun Wu, Jingrui He","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In federated learning, most existing robust aggregation rules (AGRs) combat Byzantine attacks in the IID setting, where client data is assumed to be independent and identically distributed. In this paper, we address label skewness, a more realistic and challenging non-IID setting, where each client only has access to a few classes of data. In this setting, state-of-the-art AGRs suffer from selection bias, leading to significant performance drop for particular classes; they are also more vulnerable to Byzantine attacks due to the increased variation among gradients of honest clients. To address these limitations, we propose an efficient two-stage method named <i>BOBA</i>. Theoretically, we prove the convergence of BOBA with an error of the optimal order. Our empirical evaluations demonstrate BOBA's superior unbiasedness and robustness across diverse models and datasets when compared to various baselines. Our code is available at https://github.com/baowenxuan/BOBA.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"1 ","pages":"892-900"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In federated learning, most existing robust aggregation rules (AGRs) combat Byzantine attacks in the IID setting, where client data is assumed to be independent and identically distributed. In this paper, we address label skewness, a more realistic and challenging non-IID setting, where each client only has access to a few classes of data. In this setting, state-of-the-art AGRs suffer from selection bias, leading to significant performance drop for particular classes; they are also more vulnerable to Byzantine attacks due to the increased variation among gradients of honest clients. To address these limitations, we propose an efficient two-stage method named BOBA. Theoretically, we prove the convergence of BOBA with an error of the optimal order. Our empirical evaluations demonstrate BOBA's superior unbiasedness and robustness across diverse models and datasets when compared to various baselines. Our code is available at https://github.com/baowenxuan/BOBA.

带有标签偏度的拜占庭鲁棒联邦学习。
在联邦学习中,大多数现有的鲁棒聚合规则(agr)在IID设置中对抗拜占庭攻击,其中假定客户端数据是独立且相同分布的。在本文中,我们解决了标签偏度,这是一种更现实和更具挑战性的非iid设置,其中每个客户端只能访问几类数据。在这种情况下,最先进的agr受到选择偏差的影响,导致特定类别的性能显著下降;它们也更容易受到拜占庭攻击,因为诚实客户端的梯度变化越来越大。为了解决这些限制,我们提出了一种高效的两阶段方法——BOBA。从理论上证明了BOBA具有最优阶误差的收敛性。我们的实证评估表明,与各种基线相比,BOBA在不同模型和数据集上具有优越的无偏性和稳健性。我们的代码可在https://github.com/baowenxuan/BOBA上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信