Transport-based transfer learning on Electronic Health Records: application to detection of treatment disparities.

IF 4.6 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wanxin Li, Saad Ahmed, Yongjin P Park, Khanh Dao Duc
{"title":"Transport-based transfer learning on Electronic Health Records: application to detection of treatment disparities.","authors":"Wanxin Li, Saad Ahmed, Yongjin P Park, Khanh Dao Duc","doi":"10.1093/jamia/ocaf134","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Electronic Health Records (EHRs) sampled from different populations can introduce unwanted biases, limit individual-level data sharing, and make the data and fitted model hardly transferable across different population groups. In this context, our main goal is to design an effective method to transfer knowledge between population groups, with computable guarantees for suitability, and that can be applied to quantify treatment disparities.</p><p><strong>Materials and methods: </strong>For a model trained in an embedded feature space of one subgroup, our proposed framework, Optimal Transport-based Transfer Learning for EHRs (OTTEHR), combines feature embedding of the data and unbalanced optimal transport (OT) for domain adaptation to another population group. To test our method, we processed and divided the MIMIC-III and MIMIC-IV databases into multiple population groups using ICD codes and multiple labels.</p><p><strong>Results: </strong>We derive a theoretical bound for the generalization error of our method, and interpret it in terms of the Wasserstein distance, unbalancedness between the source and target domains, and labeling divergence, which can be used as a guide for assessing the suitability of binary classification and regression tasks. In general, our method achieves better accuracy and computational efficiency compared with standard and machine learning transfer learning methods on various tasks. Upon testing our method for populations with different insurance plans, we detect various levels of disparities in hospital duration stay between groups.</p><p><strong>Discussion and conclusion: </strong>By leveraging tools from OT theory, our proposed framework allows to compare statistical models on EHR data between different population groups. As a potential application for clinical decision making, we quantify treatment disparities between different population groups. Future directions include applying OTTEHR to broader regression and classification tasks and extending the method to semi-supervised learning.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf134","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Electronic Health Records (EHRs) sampled from different populations can introduce unwanted biases, limit individual-level data sharing, and make the data and fitted model hardly transferable across different population groups. In this context, our main goal is to design an effective method to transfer knowledge between population groups, with computable guarantees for suitability, and that can be applied to quantify treatment disparities.

Materials and methods: For a model trained in an embedded feature space of one subgroup, our proposed framework, Optimal Transport-based Transfer Learning for EHRs (OTTEHR), combines feature embedding of the data and unbalanced optimal transport (OT) for domain adaptation to another population group. To test our method, we processed and divided the MIMIC-III and MIMIC-IV databases into multiple population groups using ICD codes and multiple labels.

Results: We derive a theoretical bound for the generalization error of our method, and interpret it in terms of the Wasserstein distance, unbalancedness between the source and target domains, and labeling divergence, which can be used as a guide for assessing the suitability of binary classification and regression tasks. In general, our method achieves better accuracy and computational efficiency compared with standard and machine learning transfer learning methods on various tasks. Upon testing our method for populations with different insurance plans, we detect various levels of disparities in hospital duration stay between groups.

Discussion and conclusion: By leveraging tools from OT theory, our proposed framework allows to compare statistical models on EHR data between different population groups. As a potential application for clinical decision making, we quantify treatment disparities between different population groups. Future directions include applying OTTEHR to broader regression and classification tasks and extending the method to semi-supervised learning.

基于传输的电子健康记录迁移学习:应用于治疗差异的检测。
目的:从不同人群中取样的电子健康记录(EHRs)可能会引入不必要的偏差,限制个人层面的数据共享,并使数据和拟合模型难以在不同人群中转移。在这种情况下,我们的主要目标是设计一种有效的方法来在人口群体之间传递知识,具有可计算的适用性保证,并可用于量化治疗差异。材料和方法:对于在一个子群体的嵌入特征空间中训练的模型,我们提出的框架,基于最优传输的电子病历迁移学习(OTTEHR),结合了数据的特征嵌入和不平衡最优传输(OT),以适应另一个群体的领域。为了验证我们的方法,我们使用ICD代码和多个标签对MIMIC-III和MIMIC-IV数据库进行处理并将其划分为多个种群组。结果:我们推导了方法泛化误差的理论边界,并从Wasserstein距离、源域和目标域之间的不平衡以及标记分歧等方面对其进行了解释,可以作为评估二元分类和回归任务适用性的指导。总的来说,在各种任务上,与标准迁移学习方法和机器学习迁移学习方法相比,我们的方法获得了更好的精度和计算效率。在对不同保险计划的人群测试我们的方法后,我们发现各组之间住院时间的不同程度的差异。讨论和结论:通过利用OT理论的工具,我们提出的框架允许比较不同人群之间电子病历数据的统计模型。作为临床决策的潜在应用,我们量化了不同人群之间的治疗差异。未来的方向包括将OTTEHR应用于更广泛的回归和分类任务,并将该方法扩展到半监督学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信