Sanchari Bhattacharyya, Srivastav Ranganathan, Sourav Chowdhury, Bharat V Adkar, Mark Khrapko, Eugene I Shakhnovich
{"title":"Conserved interfaces mediate multiple protein-protein interactions in a prokaryotic metabolon.","authors":"Sanchari Bhattacharyya, Srivastav Ranganathan, Sourav Chowdhury, Bharat V Adkar, Mark Khrapko, Eugene I Shakhnovich","doi":"10.1038/s44320-025-00139-9","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes in a pathway often form metabolons through weak protein-protein interactions (PPI) that localize and protect labile metabolites. Due to their transient nature, the structural architecture of these enzyme assemblies has largely remained elusive, limiting our abilities to re-engineer novel metabolic pathways. Here, we delineate a complete PPI map of 1225 interactions in the E. coli 1-carbon metabolism pathway using bimolecular fluorescence complementation that can capture transient interactions in vivo and show strong intra- and inter-pathway clusters within the folate and purine biosynthesis pathways. Scanning mutagenesis experiments along with AlphaFold predictions and metadynamics simulations reveal that most proteins use conserved \"dedicated\" interfaces distant from their active sites to interact with multiple partners. Diffusion-reaction simulations with shared interaction surfaces and realistic PPI networks reveal a dramatic speedup in metabolic pathway fluxes. Overall, this study sheds light on the fundamental features of metabolon biophysics and structural aspects of transient binary complexes.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00139-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymes in a pathway often form metabolons through weak protein-protein interactions (PPI) that localize and protect labile metabolites. Due to their transient nature, the structural architecture of these enzyme assemblies has largely remained elusive, limiting our abilities to re-engineer novel metabolic pathways. Here, we delineate a complete PPI map of 1225 interactions in the E. coli 1-carbon metabolism pathway using bimolecular fluorescence complementation that can capture transient interactions in vivo and show strong intra- and inter-pathway clusters within the folate and purine biosynthesis pathways. Scanning mutagenesis experiments along with AlphaFold predictions and metadynamics simulations reveal that most proteins use conserved "dedicated" interfaces distant from their active sites to interact with multiple partners. Diffusion-reaction simulations with shared interaction surfaces and realistic PPI networks reveal a dramatic speedup in metabolic pathway fluxes. Overall, this study sheds light on the fundamental features of metabolon biophysics and structural aspects of transient binary complexes.
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.