Multiparametric MRI-Based Machine Learning Radiomics Prognostic Models for Multifocal Hepatocellular Carcinoma Beyond Milan Criteria: A Retrospective Study.

IF 3.4 3区 医学 Q2 ONCOLOGY
Journal of Hepatocellular Carcinoma Pub Date : 2025-08-28 eCollection Date: 2025-01-01 DOI:10.2147/JHC.S528391
Xinyue Liang, Fei Wu, Xinde Zheng, Yuyao Xiao, Chun Yang, Mengsu Zeng
{"title":"Multiparametric MRI-Based Machine Learning Radiomics Prognostic Models for Multifocal Hepatocellular Carcinoma Beyond Milan Criteria: A Retrospective Study.","authors":"Xinyue Liang, Fei Wu, Xinde Zheng, Yuyao Xiao, Chun Yang, Mengsu Zeng","doi":"10.2147/JHC.S528391","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop machine learning radiomics models for preoperative risk stratification of multifocal hepatocellular carcinoma (MHCC) beyond Milan criteria.</p><p><strong>Methods: </strong>Patients with pathologically proven MHCC beyond Milan criteria between January 2015 and January 2019 were retrospectively included. Radiomic features were extracted from tumor, peritumor, and tumor-peritumor regions using multiparametric MRI (mpMRI). An unsupervised spectral clustering algorithm was used to identify radiomics-based patient subtypes. Radiomics risk scores (RRS) for overall survival (OS) and recurrence-free survival (RFS) were generated using supervised extreme gradient boosting (XGBoost)-LASSO Cox proportional hazard regression analysis. The Concordance index (C-Index) was used to evaluate the model performance in the training and validation sets.</p><p><strong>Results: </strong>A total of 156 patients were divided into training (n = 78) and validation (n = 78) groups. Two distinct unsupervised subtypes were identified using spectral clustering, and subtype B was associated with worse OS and poor RFS. Incorporating radiomics predictors into the conventional preoperative clinical-radiological features improved the OS prediction performance (training set: from 0.616 to 0.712; validation set: from 0.522 to 0.710), and RFS prediction (training set: from 0.653 to 0.735; validation set: from 0.574 to 0.698). The combined models showed good predictive performance for 5-year OS (AUC, 0.77) and RFS (AUC, 0.81) in the training set and for 5-year OS (AUC, 0.75) and RFS (AUC, 0.76) in the validation set.</p><p><strong>Conclusion: </strong>Two preoperative models combining mpMRI-based clinico-radiological and radiomics predictors effectively predicted outcomes for patients with MHCC beyond the Milan criteria.</p>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"12 ","pages":"1957-1972"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JHC.S528391","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop machine learning radiomics models for preoperative risk stratification of multifocal hepatocellular carcinoma (MHCC) beyond Milan criteria.

Methods: Patients with pathologically proven MHCC beyond Milan criteria between January 2015 and January 2019 were retrospectively included. Radiomic features were extracted from tumor, peritumor, and tumor-peritumor regions using multiparametric MRI (mpMRI). An unsupervised spectral clustering algorithm was used to identify radiomics-based patient subtypes. Radiomics risk scores (RRS) for overall survival (OS) and recurrence-free survival (RFS) were generated using supervised extreme gradient boosting (XGBoost)-LASSO Cox proportional hazard regression analysis. The Concordance index (C-Index) was used to evaluate the model performance in the training and validation sets.

Results: A total of 156 patients were divided into training (n = 78) and validation (n = 78) groups. Two distinct unsupervised subtypes were identified using spectral clustering, and subtype B was associated with worse OS and poor RFS. Incorporating radiomics predictors into the conventional preoperative clinical-radiological features improved the OS prediction performance (training set: from 0.616 to 0.712; validation set: from 0.522 to 0.710), and RFS prediction (training set: from 0.653 to 0.735; validation set: from 0.574 to 0.698). The combined models showed good predictive performance for 5-year OS (AUC, 0.77) and RFS (AUC, 0.81) in the training set and for 5-year OS (AUC, 0.75) and RFS (AUC, 0.76) in the validation set.

Conclusion: Two preoperative models combining mpMRI-based clinico-radiological and radiomics predictors effectively predicted outcomes for patients with MHCC beyond the Milan criteria.

Abstract Image

Abstract Image

Abstract Image

超过米兰标准的多灶性肝细胞癌的多参数mri机器学习放射组学预后模型:一项回顾性研究。
目的:建立机器学习放射组学模型,用于超出米兰标准的多灶性肝细胞癌(MHCC)的术前风险分层。方法:回顾性纳入2015年1月至2019年1月期间病理证实超出米兰标准的MHCC患者。使用多参数MRI (mpMRI)提取肿瘤、肿瘤周围和肿瘤-肿瘤周围区域的放射学特征。采用无监督谱聚类算法识别基于放射组学的患者亚型。采用监督极端梯度增强(XGBoost)-LASSO Cox比例风险回归分析生成总生存期(OS)和无复发生存期(RFS)的放射组学风险评分(RRS)。使用一致性指数(C-Index)来评估模型在训练集和验证集上的性能。结果:156例患者被分为训练组(n = 78)和验证组(n = 78)。使用谱聚类确定了两种不同的无监督亚型,亚型B与较差的OS和较差的RFS相关。将放射组学预测因子纳入常规术前临床放射学特征,提高了OS预测性能(训练集:从0.616到0.712;验证集:从0.522到0.710)和RFS预测(训练集:从0.653到0.735;验证集:从0.574到0.698)。联合模型对训练集的5年OS (AUC, 0.77)和RFS (AUC, 0.81)以及验证集的5年OS (AUC, 0.75)和RFS (AUC, 0.76)具有良好的预测性能。结论:两种术前模型结合了基于mpmri的临床放射学和放射组学预测因子,有效地预测了超出米兰标准的MHCC患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
2.40%
发文量
108
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信