{"title":"Multiparametric MRI-Based Machine Learning Radiomics Prognostic Models for Multifocal Hepatocellular Carcinoma Beyond Milan Criteria: A Retrospective Study.","authors":"Xinyue Liang, Fei Wu, Xinde Zheng, Yuyao Xiao, Chun Yang, Mengsu Zeng","doi":"10.2147/JHC.S528391","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop machine learning radiomics models for preoperative risk stratification of multifocal hepatocellular carcinoma (MHCC) beyond Milan criteria.</p><p><strong>Methods: </strong>Patients with pathologically proven MHCC beyond Milan criteria between January 2015 and January 2019 were retrospectively included. Radiomic features were extracted from tumor, peritumor, and tumor-peritumor regions using multiparametric MRI (mpMRI). An unsupervised spectral clustering algorithm was used to identify radiomics-based patient subtypes. Radiomics risk scores (RRS) for overall survival (OS) and recurrence-free survival (RFS) were generated using supervised extreme gradient boosting (XGBoost)-LASSO Cox proportional hazard regression analysis. The Concordance index (C-Index) was used to evaluate the model performance in the training and validation sets.</p><p><strong>Results: </strong>A total of 156 patients were divided into training (n = 78) and validation (n = 78) groups. Two distinct unsupervised subtypes were identified using spectral clustering, and subtype B was associated with worse OS and poor RFS. Incorporating radiomics predictors into the conventional preoperative clinical-radiological features improved the OS prediction performance (training set: from 0.616 to 0.712; validation set: from 0.522 to 0.710), and RFS prediction (training set: from 0.653 to 0.735; validation set: from 0.574 to 0.698). The combined models showed good predictive performance for 5-year OS (AUC, 0.77) and RFS (AUC, 0.81) in the training set and for 5-year OS (AUC, 0.75) and RFS (AUC, 0.76) in the validation set.</p><p><strong>Conclusion: </strong>Two preoperative models combining mpMRI-based clinico-radiological and radiomics predictors effectively predicted outcomes for patients with MHCC beyond the Milan criteria.</p>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"12 ","pages":"1957-1972"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JHC.S528391","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To develop machine learning radiomics models for preoperative risk stratification of multifocal hepatocellular carcinoma (MHCC) beyond Milan criteria.
Methods: Patients with pathologically proven MHCC beyond Milan criteria between January 2015 and January 2019 were retrospectively included. Radiomic features were extracted from tumor, peritumor, and tumor-peritumor regions using multiparametric MRI (mpMRI). An unsupervised spectral clustering algorithm was used to identify radiomics-based patient subtypes. Radiomics risk scores (RRS) for overall survival (OS) and recurrence-free survival (RFS) were generated using supervised extreme gradient boosting (XGBoost)-LASSO Cox proportional hazard regression analysis. The Concordance index (C-Index) was used to evaluate the model performance in the training and validation sets.
Results: A total of 156 patients were divided into training (n = 78) and validation (n = 78) groups. Two distinct unsupervised subtypes were identified using spectral clustering, and subtype B was associated with worse OS and poor RFS. Incorporating radiomics predictors into the conventional preoperative clinical-radiological features improved the OS prediction performance (training set: from 0.616 to 0.712; validation set: from 0.522 to 0.710), and RFS prediction (training set: from 0.653 to 0.735; validation set: from 0.574 to 0.698). The combined models showed good predictive performance for 5-year OS (AUC, 0.77) and RFS (AUC, 0.81) in the training set and for 5-year OS (AUC, 0.75) and RFS (AUC, 0.76) in the validation set.
Conclusion: Two preoperative models combining mpMRI-based clinico-radiological and radiomics predictors effectively predicted outcomes for patients with MHCC beyond the Milan criteria.