Detecting subtle deviations in Brownian motion representations driven by a Schauder basis.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0287678
Massimiliano Frezza
{"title":"Detecting subtle deviations in Brownian motion representations driven by a Schauder basis.","authors":"Massimiliano Frezza","doi":"10.1063/5.0287678","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we construct surrogate stochastic processes that are challenging to distinguish from ordinary Brownian motion using a method based on the Schauder representation. Specifically, by assuming non-Gaussian (beta and uniform) distributions for the Schauder coefficients, we generate sample paths that preserve key properties of Brownian motion-such as quadratic variation, covariance structure, pointwise Hölder regularity, uncorrelated increments, as well as Gaussian marginal distributions. However, a deeper analysis relying on entropy-based measures and sliding-window spectral variance reveals that only the Gaussian-based construction preserves the expected randomness and the consistent spectral behavior of Brownian motion over time. In contrast, non-Gaussian variants exhibit subtle deviations from true Brownian motion.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0287678","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we construct surrogate stochastic processes that are challenging to distinguish from ordinary Brownian motion using a method based on the Schauder representation. Specifically, by assuming non-Gaussian (beta and uniform) distributions for the Schauder coefficients, we generate sample paths that preserve key properties of Brownian motion-such as quadratic variation, covariance structure, pointwise Hölder regularity, uncorrelated increments, as well as Gaussian marginal distributions. However, a deeper analysis relying on entropy-based measures and sliding-window spectral variance reveals that only the Gaussian-based construction preserves the expected randomness and the consistent spectral behavior of Brownian motion over time. In contrast, non-Gaussian variants exhibit subtle deviations from true Brownian motion.

探测由邵德基驱动的布朗运动表示中的细微偏差。
在本研究中,我们使用基于Schauder表示的方法构建替代随机过程,该过程与普通布朗运动具有挑战性。具体来说,通过假设Schauder系数的非高斯(beta和均匀)分布,我们生成的样本路径保留了布朗运动的关键属性,如二次变分、协方差结构、逐点Hölder规则、不相关增量以及高斯边际分布。然而,依靠基于熵的度量和滑动窗口谱方差的更深入分析表明,只有基于高斯的构造保留了预期的随机性和布朗运动随时间的一致谱行为。相反,非高斯变异体表现出与真实布朗运动的细微偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信