NAMPT Is A Novel Inhibitor of Vascular Calcification in Chronic Kidney Disease.

IF 7.4 1区 医学 Q1 HEMATOLOGY
Qianqian Dong, Lihe Lu, Xiuli Zhang, Liyun Feng, Li Li, Hao Liu, An Chen, Zirong Lan, Yuanzhi Ye, Jiahui Zhu, Xiaoyu Liu, Yining Li, Qingchun Liang, Jianyun Yan
{"title":"NAMPT Is A Novel Inhibitor of Vascular Calcification in Chronic Kidney Disease.","authors":"Qianqian Dong, Lihe Lu, Xiuli Zhang, Liyun Feng, Li Li, Hao Liu, An Chen, Zirong Lan, Yuanzhi Ye, Jiahui Zhu, Xiaoyu Liu, Yining Li, Qingchun Liang, Jianyun Yan","doi":"10.1161/ATVBAHA.125.322549","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vascular calcification is very common in patients with chronic kidney disease and contributes to the increased risk of cardiovascular events. NAMPT (nicotinamide phosphoribosyltransferase), the rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide, has been shown to exert an antiaging effect on vascular smooth muscle cells. However, whether NAMPT is involved in the regulation of vascular calcification remains unclear.</p><p><strong>Methods: </strong>ELISA, immunofluorescence, and Western blot were used to detect NAMPT levels in human blood and tissues. Alizarin red staining, calcium content assay, and microcomputed tomography were used to investigate the role of NAMPT in vascular calcification. Gene expression analysis and coimmunoprecipitation were performed to elucidate the underlying mechanism.</p><p><strong>Results: </strong>ELISA, immunofluorescence, and Western blot showed that NAMPT levels were increased in the blood of patients with chronic kidney disease and human calcified arterial tissues. Alizarin red staining and calcium content assay revealed that pharmacological inhibition or knockdown of NAMPT exacerbated vascular smooth muscle cell calcification, whereas overexpression of NAMPT reduced mineral deposition under osteogenic conditions. Similarly, ex vivo studies revealed that NAMPT inhibited calcification of rat and human arterial rings. Moreover, administration of NAMPT inhibitor FK866 promoted aortic calcification of chronic kidney disease rats, and smooth muscle cell-specific NAMPT knockout mice exhibited aggravated aortic calcification. Furthermore, pharmacological inhibition and knockdown of SIRT1 (sirtuin 1) abrogated the inhibitory effect of NAMPT on vascular calcification. In addition, smooth muscle cell-specific SIRT1 deficiency abrogated the protective effect of recombinant NAMPT on mouse aortic calcification. Coimmunoprecipitation and immunofluorescence assay further revealed that NAMPT inhibited the acetylation of NICD (Notch intracellular domain) and reduced the expression of HES1 (hairy and enhancer of split-1) in a SIRT1-dependent pathway.</p><p><strong>Conclusions: </strong>Our study unveils that NAMPT could serve as a novel endogenous inhibitor of vascular calcification via modulation of SIRT1-mediated deacetylation of NICD.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"1872-1892"},"PeriodicalIF":7.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.125.322549","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Vascular calcification is very common in patients with chronic kidney disease and contributes to the increased risk of cardiovascular events. NAMPT (nicotinamide phosphoribosyltransferase), the rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide, has been shown to exert an antiaging effect on vascular smooth muscle cells. However, whether NAMPT is involved in the regulation of vascular calcification remains unclear.

Methods: ELISA, immunofluorescence, and Western blot were used to detect NAMPT levels in human blood and tissues. Alizarin red staining, calcium content assay, and microcomputed tomography were used to investigate the role of NAMPT in vascular calcification. Gene expression analysis and coimmunoprecipitation were performed to elucidate the underlying mechanism.

Results: ELISA, immunofluorescence, and Western blot showed that NAMPT levels were increased in the blood of patients with chronic kidney disease and human calcified arterial tissues. Alizarin red staining and calcium content assay revealed that pharmacological inhibition or knockdown of NAMPT exacerbated vascular smooth muscle cell calcification, whereas overexpression of NAMPT reduced mineral deposition under osteogenic conditions. Similarly, ex vivo studies revealed that NAMPT inhibited calcification of rat and human arterial rings. Moreover, administration of NAMPT inhibitor FK866 promoted aortic calcification of chronic kidney disease rats, and smooth muscle cell-specific NAMPT knockout mice exhibited aggravated aortic calcification. Furthermore, pharmacological inhibition and knockdown of SIRT1 (sirtuin 1) abrogated the inhibitory effect of NAMPT on vascular calcification. In addition, smooth muscle cell-specific SIRT1 deficiency abrogated the protective effect of recombinant NAMPT on mouse aortic calcification. Coimmunoprecipitation and immunofluorescence assay further revealed that NAMPT inhibited the acetylation of NICD (Notch intracellular domain) and reduced the expression of HES1 (hairy and enhancer of split-1) in a SIRT1-dependent pathway.

Conclusions: Our study unveils that NAMPT could serve as a novel endogenous inhibitor of vascular calcification via modulation of SIRT1-mediated deacetylation of NICD.

NAMPT是一种新的慢性肾脏疾病血管钙化抑制剂。
背景:血管钙化在慢性肾脏疾病患者中非常常见,并有助于增加心血管事件的风险。NAMPT(烟酰胺磷酸核糖基转移酶)是烟酰胺腺嘌呤二核苷酸回收途径中的限速酶,已被证明对血管平滑肌细胞具有抗衰老作用。然而,NAMPT是否参与血管钙化的调节尚不清楚。方法:采用ELISA法、免疫荧光法、Western blot法检测人血液和组织中NAMPT的含量。采用茜素红染色、钙含量测定和显微计算机断层扫描研究NAMPT在血管钙化中的作用。通过基因表达分析和共免疫沉淀来阐明其潜在机制。结果:ELISA、免疫荧光、Western blot检测显示慢性肾脏病患者及人动脉钙化组织血中NAMPT水平升高。茜素红染色和钙含量测定显示,药物抑制或敲低NAMPT会加剧血管平滑肌细胞钙化,而过表达NAMPT则会减少成骨条件下的矿物质沉积。同样,离体研究显示NAMPT抑制大鼠和人动脉环的钙化。此外,给药NAMPT抑制剂FK866促进慢性肾病大鼠主动脉钙化,平滑肌细胞特异性NAMPT敲除小鼠主动脉钙化加剧。此外,药物抑制和敲低SIRT1 (sirtuin 1)可消除NAMPT对血管钙化的抑制作用。此外,平滑肌细胞特异性SIRT1缺乏使重组NAMPT对小鼠主动脉钙化的保护作用失效。共免疫沉淀和免疫荧光分析进一步显示,NAMPT抑制了NICD (Notch胞内结构域)的乙酰化,降低了sirt1依赖通路中HES1 (hairy and enhancer of split-1)的表达。结论:我们的研究表明,NAMPT可以通过调节sirt1介导的NICD去乙酰化,作为一种新的内源性血管钙化抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.60
自引率
2.30%
发文量
337
审稿时长
2-4 weeks
期刊介绍: The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA). The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信