stImage: a versatile framework for optimizing spatial transcriptomic analysis through customizable deep histology and location informed integration.

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yu Wang, Haichun Yang, Ruining Deng, Yuankai Huo, Qi Liu, Yu Shyr, Shilin Zhao
{"title":"stImage: a versatile framework for optimizing spatial transcriptomic analysis through customizable deep histology and location informed integration.","authors":"Yu Wang, Haichun Yang, Ruining Deng, Yuankai Huo, Qi Liu, Yu Shyr, Shilin Zhao","doi":"10.1093/bib/bbaf429","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomics (ST) integrates gene expression data with the spatial organization of cells and their associated histology, offering unprecedented insights into tissue biology. While existing methods incorporate either location-based or histology-informed information, none fully synergize gene expression, histological features, and precise spatial coordinates within a unified framework. Moreover, these methods often exhibit inconsistent performance across diverse datasets and conditions. Here, we introduce stImage, an open-source R package that provides a comprehensive and flexible solution for ST analysis. By generating deep learning-derived histology features and offering 54 integrative strategies, stImage seamlessly combines transcriptional profiles, histology images, and spatial information. We demonstrate stImage's effectiveness across multiple datasets, underscoring its ability to guide users toward the most suitable integration strategy using diagnostic graph. Our results highlight how stImage can optimize ST, consistently improving biological insights and advancing our understanding of tissue architecture. stImage is freely available at https://github.com/YuWang-VUMC/stImage.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf429","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial transcriptomics (ST) integrates gene expression data with the spatial organization of cells and their associated histology, offering unprecedented insights into tissue biology. While existing methods incorporate either location-based or histology-informed information, none fully synergize gene expression, histological features, and precise spatial coordinates within a unified framework. Moreover, these methods often exhibit inconsistent performance across diverse datasets and conditions. Here, we introduce stImage, an open-source R package that provides a comprehensive and flexible solution for ST analysis. By generating deep learning-derived histology features and offering 54 integrative strategies, stImage seamlessly combines transcriptional profiles, histology images, and spatial information. We demonstrate stImage's effectiveness across multiple datasets, underscoring its ability to guide users toward the most suitable integration strategy using diagnostic graph. Our results highlight how stImage can optimize ST, consistently improving biological insights and advancing our understanding of tissue architecture. stImage is freely available at https://github.com/YuWang-VUMC/stImage.

stImage:通过可定制的深度组织学和位置信息集成优化空间转录组分析的通用框架。
空间转录组学(ST)将基因表达数据与细胞的空间组织及其相关组织学相结合,为组织生物学提供了前所未有的见解。虽然现有的方法包括基于位置或组织的信息,但没有一种方法能在统一的框架内充分协同基因表达、组织特征和精确的空间坐标。此外,这些方法在不同的数据集和条件下往往表现出不一致的性能。在这里,我们介绍stImage,一个开源的R包,它为ST分析提供了一个全面而灵活的解决方案。通过生成基于深度学习的组织学特征并提供54种整合策略,stImage无缝地结合了转录谱、组织学图像和空间信息。我们展示了stImage在多个数据集上的有效性,强调了它使用诊断图引导用户采用最合适的集成策略的能力。我们的研究结果强调了stImage如何优化ST,不断提高生物学洞察力并推进我们对组织结构的理解。stImage可以在https://github.com/YuWang-VUMC/stImage免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信